Skip to main content

Advertisement

Log in

Vegetation feedback under future global warming

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

It has been well documented that vegetation plays an important role in the climate system. However, vegetation is typically kept constant when climate models are used to project anthropogenic climate change under a range of emission scenarios in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Here, an atmospheric general circulation model, and an asynchronously coupled system of an atmospheric and an equilibrium terrestrial biosphere model are forced by monthly sea surface temperature and sea ice extent for the periods 2051–2060 and 2090–2098 as projected with 17 atmosphere–ocean general circulation models participating in the IPCC Fourth Assessment Report, and by appropriate atmospheric carbon dioxide concentrations under the A2 emission scenario. The effects of vegetation feedback under future global warming are then investigated. It is found that the simulated composition and distribution of vegetation during 2051–2060 (2090–2098) differ greatly from the present, and global vegetation tends to become denser as expressed by a 21% (36%) increase in global mean leaf area index, which is most pronounced at the middle and high northern latitudes. Vegetation feedback has little effect on globally averaged surface temperature. On a regional scale, however, it induces statistically significant changes in surface temperature, in particular over most parts of continental Eurasia east of about 60°E where annual surface temperature is expected to increase by 0.1–1.0 K, with an average of about 0.4 K for each future period. These changes can mostly be explained by changes in surface albedo resulting from vegetation changes in the context of future global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alo CA, Wang G (2008) Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J Geophys Res 113:G01004. doi:10.1029/2007JG000528

    Article  Google Scholar 

  • Bachelet D, Lenihan J, Drapek R, Neilson R (2008) VEMAP vs. VINCERA: a DGVM sensitivity to differences in climate scenarios. Glob Planet Change 64:38–48

    Article  Google Scholar 

  • Bergengren JC, Thompson SL, Pollard D, Deconto RM (2001) Modelling global climate–vegetation interactions in a doubled CO2 world. Clim Change 50:31–75

    Article  Google Scholar 

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799

    Article  Google Scholar 

  • Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78:157–175

    Article  Google Scholar 

  • Boucher O, Jones A, Betts RA (2009) Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Climate Dyn 32:237–249

    Article  Google Scholar 

  • Claussen M (1994) On coupling global biome models with climate models. Clim Res 4:203–221

    Article  Google Scholar 

  • Claussen M (1997) Modeling bio-geophysical feedback in the African and Indian monsoon region. Climate Dyn 13:247–257

    Article  Google Scholar 

  • Cook KH, Vizy EK (2008) Effects of twenty-first century climate change on the Amazon rain forest. J Climate 21:542–560

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Cox PM, Betts RA, Collis M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373

    Article  Google Scholar 

  • Delire C, Ngomanda A, Jolly D (2008) Possible impacts of 21st century climate on vegetation in Central and West Africa. Glob Planet Change 64:3–15

    Article  Google Scholar 

  • Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) Importance of vegetation feedbacks in doubled-CO2 climate experiments. J Geophys Res 105(D11):14841–14861

    Article  Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310:1674–1678

    Article  Google Scholar 

  • Field C, Jackson R, Mooney H (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1225

    Article  Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54

    Article  Google Scholar 

  • Friedlingstein P, Bopp L, Ciais P, Dufresne JL, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28:1543–1546

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate–carbon cycle feedback analysis: results from the C4MIP Model Intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci USA 102:11201–11206

    Article  Google Scholar 

  • Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation–atmosphere–ocean interaction on climate during the mid-Holocene. Science 280:1916–1919

    Article  Google Scholar 

  • Govindasamy B, Thompson S, Mirin A, Wickett M, Caldeira K, Delire C (2005) Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus 57B:153–163

    Google Scholar 

  • Gregory JM, Jones CD, Cadule P, Friedlingstein P (2009) Quantifying carbon cycle feedbacks. J Climate 22:5232–5250

    Article  Google Scholar 

  • Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob Biogeochem Cycles 10:693–709

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 663–745

    Google Scholar 

  • Henderson-Sellers A, Mcguffie K (1994) Land-surface characterization in greenhouse climate simulations. Int J Climatol 14:1065–1094

    Article  Google Scholar 

  • Huntigford C, Cox PM (2000) An analogue model to derive additional climate change scenarios from existing GCM simulations. Climate Dyn 16:575–586

    Article  Google Scholar 

  • Jiang D (2008) Vegetation and soil feedbacks at the Last Glacial Maximum. Palaeogeogr Palaeoclimatol Palaeoecol 268:39–46

    Article  Google Scholar 

  • Jiang D, Zhang Z (2006) Paleoclimate modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences. Adv Atmos Sci 23:1040–1049

    Article  Google Scholar 

  • Kaplan JO, New M (2006) Arctic climate change with a 2°C global warming: timing, climate patterns and vegetation change. Clim Change 79:213–241

    Article  Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and Arctic ecosystems: 2. modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D19):8171. doi:10.1029/2002JD002559

    Article  Google Scholar 

  • Kubatzki C, Claussen M (1998) Simulation of the global bio-geophysical interactions during the Last Glacial Maximum. Climate Dyn 14:461–471

    Article  Google Scholar 

  • Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen M (2000) Comparison of the last interglacial climate simulated by a coupled global model of intermediate complexity and an AOGCM. Climate Dyn 16:799–814

    Article  Google Scholar 

  • Kutzbach J, Bonan G, Foley J, Harrison SP (1996) Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384:623–626

    Article  Google Scholar 

  • Lamptey BL, Barron EJ, Pollard D (2005) Simulation of the relative impact of land cover and carbon dioxide to climate change from 1700 to 2100. J Geophys Res 110:D20103. doi:10.1029/2005JD005916

    Article  Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA climate database for mean monthly values of temperature, precipitation and cloudiness on a terrestrial grid, RR-91-18. International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  • Levis S, Foley JA, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-indudced climate change. Geophys Res Lett 26:747–750

    Article  Google Scholar 

  • Liang XZ (1996) Description of a nine-level grid point atmospheric general circulation model. Adv Atmos Sci 13:269–298

    Article  Google Scholar 

  • Matthews E (1983) Global vegetation and land use: new high resolution data bases for climate studies. J Climate Appl Meteorol 22:474–487

    Article  Google Scholar 

  • Matthews HD, Weaver AJ, Meissner KJ (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Climate 18:1609–1628

    Article  Google Scholar 

  • Matthews HD, Eby M, Ewen T, Friedlingstein P, Hawkins BJ (2007) What determines the magnitude of carbon cycle–climate feedbacks? Glob Biogeochem Cycles 21:GB2012. doi:10.1029/2006GB002733

    Article  Google Scholar 

  • Maynard K, Royer JF (2004) Effects of “realistic” land-cover change on a greenhouse-warmed African climate. Climate Dyn 22:343–358

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 747–845

    Google Scholar 

  • Monserud RA, Tchebakova NM, Leemans R (1993) Global vegetation changes predicted by the modified Budyko model. Clim Change 25:59–83

    Article  Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios, a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, p599

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Ni J, Sykes MT, Prentice IC, Cramer W (2000) Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3. Glob Ecol Biogeogr 9:463–479

    Article  Google Scholar 

  • Notaro M, Vavrus S, Liu Z (2007) Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Climate 20:70–90

    Article  Google Scholar 

  • Pinto E, Shin Y, Cowling SA, Jones CD (2009) Past, present and future vegetation–cloud feedbacks in the Amazon Basin. Climate Dyn 32:741–751

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  • Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34:L09708. doi:10.1029/2007GL029695

    Article  Google Scholar 

  • Salzmann U, Haywood AM, Lunt DJ (2009) The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century. Philos Trans R Soc A 367:189–204

    Article  Google Scholar 

  • Schurgers G, Mikolajewicz U, Gröger M, Maier-Reimer E, Vizcaíno M, Winguth A (2007) The effect of land surface changes on Eemian climate. Climate Dyn 29:357–373

    Article  Google Scholar 

  • Schurgers G, Mikolajewicz U, Gröger M, Maier-Reimer E, Vizcaíno M, Winguth A (2008) Long-term effects of biogeophysical and biogeochemical interactions between terrestrial biosphere and climate under anthropogenic climate change. Glob Planet Change 64:26–37

    Article  Google Scholar 

  • Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO, Berry JA, Fung I, Tucker CJ, Field CB, Jensen TG (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Chang Biol 14:2015–2039

    Article  Google Scholar 

  • Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob Biogeochem Cycles 21:GB4018. doi:10.1029/2006GB002868

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis, contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 235–336

    Google Scholar 

  • Voldoire A (2006) Quantifying the impact of future land-use changes against increases in GHG concentrations. Geophys Res Lett 33:L04701. doi:10.1029/2005GL024354

    Article  Google Scholar 

  • Wang HJ (1999) Role of vegetation and soil in the Holocene megathermal climate over China. J Geophys Res 104(D8):9361–9367

    Article  Google Scholar 

  • Zeng N, Yoon J (2009) Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys Res Lett 36:L17401. doi:10.1029/2009GL039699

    Article  Google Scholar 

  • Zeng N, Qian H, Munoz E (2004) How strong is carbon cycle-climate feedback under global warming? Geophys Res Lett 31:L20203. doi:10.1029/2004GL020904

    Article  Google Scholar 

  • Zhang K, Kimball JS, Hogg EH, Zhao M, Oechel WC, Cassano JJ, Running SW (2008) Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J Geophys Res 113:G03033. doi:10.1029/2007JG000621

    Article  Google Scholar 

  • Zhang XH (1990) Dynamical framework of IAP nine-level atmospheric general circulation model. Adv Atmos Sci 7:67–77

    Article  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank Werner Eugster and an anonymous reviewer for their helpful comments and suggestions on the manuscript. Also, we acknowledge the modeling groups for making their model output available for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving these data, and the WCRP’s Working Group on Coupled Modelling (WGCM) for organizing the model data analysis activity. The WCRP CMIP3 multi-model dataset is supported by the Office of Science, US Department of Energy. This work was supported by the Chinese National Basic Research Program (2009CB421407), the Special Scientific Research Fund of Meteorological Public Welfare Profession (GYHY200906020), the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-QN202), and the National Natural Science Foundation (40505017 and 40975050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, D., Zhang, Y. & Lang, X. Vegetation feedback under future global warming. Theor Appl Climatol 106, 211–227 (2011). https://doi.org/10.1007/s00704-011-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0428-6

Keywords

Navigation