Skip to main content
Log in

Effect of microphysical schemes on simulation of a rainfall process in the central parts of the Democratic People's Republic of Korea

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This study attempts to investigate the numerical simulations of a rainfall processes over the central region of the Democratic People’s Republic of Korea (DPRK) that occurred on 11–12 August 2009 using Advanced Research Weather Research and Forecasting model. Three simulations are preformed to study the WRF model sensitivity to cloud microphysics parameterization schemes (WDM6, Thompson, SBU-YLIN) on the rainfall prediction. The detailed comparison was made between the 45 h spatial distribution of model rainfall and observations obtained from rainfall gauges. Model results are compared in terms of probability of detection, false alarm ratio, and BIAS from 29 weather stations. Results show that the microphysics schemes significantly influenced the rainfall simulation due to differences in mixing ratios of different hydrometeors. The SBU-YLIN scheme captured the spatial distribution and cumulative amounts of rainfall in close agreement with the observations. The Thompson and WDM6 schemes predicted the rainfall event with lower intensity. Results suggest that the SBU-YLIN scheme captured the time evolution of different hydrometeors that led to produce the observed rainfall distribution spatially and temporally. The results of this study show the importance of the microphysics schemes in simulating rainfall processes, as well as the high potential of using WRF for future forecasts, especially for heavy rainfall events over the DPRK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Methods in computational physics, vol 17: general circulation models of the atmosphere. J Chang Ed, Academic Press, pp 174–265

  • Brown BR, Bell MM, Thompson G (2016) Improvements to the snow melting process in a partially double-moment microphysics parameterization. J Adv Model Earth Syst 9(2):1150–1166. https://doi.org/10.1002/2016MS000892

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev 129:569–585. https://doi.org/10.1175/1520-0493(2001)129<0569:calash>2.0.co;2

  • Chosson F, Vaillancourt PA, Milbrandt JA, Yau MK, Zadra A (2014) Adapting two-moment microphysics schemes across model resolutions: subgrid cloud and precipitation fraction and microphysical sub–time step. J Atmos Sci 71(7):2635–2653. https://doi.org/10.1175/jas-d-13-0367.1

    Article  Google Scholar 

  • Cohard J-M, Pinty J-P (2000) A comprehensive two-moment warm microphysical bulk scheme. I: description and tests. Q J R Meteorol Soc 126:1815–1842

    Article  Google Scholar 

  • Comin AN, Schumacher V, Justino F, Fernández A (2018) Impact of different microphysical parameterizations on extreme snowfall events in the Southern Andes. Weather Clim Extremes 21:65–75

    Article  Google Scholar 

  • Cossu F, Hocke K (2014) Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model. Geosci Model Dev 7:147–160

    Article  Google Scholar 

  • Cotton WR, Tripoli GJ, Rauber RM, Mulvhill EA (1986) Numerical simulations of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J Clim Appl Meteorol 25:1658–1680

    Article  Google Scholar 

  • Dawson DT II, Xue M, Milbrandt JA, Yau MK (2010) Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon Weather Rev 138:1152–1171. https://doi.org/10.1175/2009MWR2956.1

    Article  Google Scholar 

  • Done J, Davis CA, Weisman ML (2004) The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos Sci Lett 5:110–117. https://doi.org/10.1002/asl.72

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46: 3077–3107. https://doi.org/10.1175/1520-0469(1989)046<3077:nsocod>2.0.co;2

  • Ferrier BS (1994) A double-moment multiple-phase four-class bulk ice scheme. Part I: description. J Atmos Sci 51:249–280. https://doi.org/10.1175/1520-0469(1994)051<0249:admmfb>2.0.co;2.

  • Fovell R (2006) Impact of microphysics on hurricane track and intensity forecasts. Seventh WRF Users’ Workshop, National Center of Atmospheric Research, 3.2, Boulder, CO. http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session03/3_2_Fovell.pdf

  • Gabriela C, Mulena DG, Allende SE, Puliafito G, Lakkis PG, Cremades AG (2016) Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling. Atmos Res 176–177:29–42

    Google Scholar 

  • Gevorgyan A (2018) Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model. J Geophys Res Atmos 123:300–314. https://doi.org/10.1029/2017JD028247

    Article  Google Scholar 

  • Hasan MA, Saiful Islam AKM (2018) Evaluation of microphysics and cumulus schemes of WRF for forecasting of heavy monsoon rainfall over the Southeastern Hilly Region of Bangladesh. Pure Appl Geophys 175(12):4537–4566. https://doi.org/10.1007/s00024-018-1876-z

    Article  Google Scholar 

  • Heymsfield AJ, Kajikawa M (1987) An improved approach to calculating terminal velocities of plate-like crystals and graupel. J Atmos Sci 44:1088–1099

    Article  Google Scholar 

  • Jankov I, Schultz P, Anderson C, Koch S (2007) The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin. J Hydrometeorol 8:1141–1151

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:tkcpau>2.0.co;2

  • Kain JS, Coauthors, (2008) Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Weather Forecast 23:931–952. https://doi.org/10.1175/2008WAF2007106.1

    Article  Google Scholar 

  • Kar SC, Tiwari S (2016) Model simulations of heavy precipitation in Kashmir, India, in September 2014. Nat Hazards 81(1):167–188. https://doi.org/10.1007/s11069-015-2073-3

    Article  Google Scholar 

  • KelvinTFC JCLC (2016) Sensitivity of the simulation of tropical cyclone size to microphysics schemes. Adv Atmos Sci 33(9):1024–1035. https://doi.org/10.1007/s00376-016-5183-2

    Article  Google Scholar 

  • Kong F, Yau MK (1997) An explicit approach to microphysics in MC2. Atmos Ocean 35:257–291

    Article  Google Scholar 

  • Kong XH, Wang AH, Bi XQ, Wang D (2016) Assessment of temperature extremes in China using RegCM4 and WRF. Adv Atmos Sci 36(4):363–377. https://doi.org/10.1007/s00376-018-8144-0

    Article  Google Scholar 

  • Kumar A, Dudhia J, Rotunno R, Niyogi D, Mohanty UC (2008) Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the weather research and forecasting (WRF) model. Q J Roy Meteorol Soc 134:1897–1910

    Article  Google Scholar 

  • Kwinten V, Edouard G, Ulrich B, Erwan B, Matthias D, Philippe M, Jean-Pascal VY (2014) Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos Res 147–148(2014):145–161. https://doi.org/10.1016/j.atmosres.2014.05.012

    Article  Google Scholar 

  • Lim K-SS, Hong S-Y (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612. https://doi.org/10.1175/2009MWR2968.1

    Article  Google Scholar 

  • Lin Y, Colle BA (2011) A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon Weather Rev 139:1013–1035. https://doi.org/10.1175/2011MWR2556.1

    Article  Google Scholar 

  • Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Loftus AM, Cotton WR, Carrió GG (2014) A triple-moment hail bulk microphysics scheme part I: description and initial evaluation. Atmos Res. https://doi.org/10.1016/j.atmosres.2014.05.013

    Article  Google Scholar 

  • Lowrey M, Yang Z (2008) Assessing the capability of a regional-scale weather model to simulate extreme precipitation patterns and flooding in central Texas. Weather Forecast 23:1102–1126. https://doi.org/10.1175/2008WAF2006082.1

    Article  Google Scholar 

  • Luo Y, Wang Y, Wang H, Morrison H (2010) Modeling convective-stratiform precipitation processes on a Meiyu front with the WRF model: comparison with observations and sensitivity to cloud microphysics parameterizations. J Geophys Res 115:D18117

    Article  Google Scholar 

  • Maussion F, Scherer D, Finkelnburg R, Richters J, Yang W, Yao T (2011) WRF simulation of a precipitation event over the Tibetan Plateau, China—an assessment using remote sensing and ground observations. Hydrol Earth Syst Sci 15:1795–1817. https://doi.org/10.5194/hess-15-1795-2011

    Article  Google Scholar 

  • Meyers MP, Walko RL, Harrington JY, Cotton WR (1997) New RAMS cloud microphysics parameterization. Part II: the two-moment scheme. Atmos Res 45:3–39

    Article  Google Scholar 

  • Milbrandt JA, Yau MK (2005) A multimoment bulk microphysics parameterization. Part II: a proposed three-moment closure and scheme description. J Atmos Sci 62:3065–3081. https://doi.org/10.1175/JAS3535.1

    Article  Google Scholar 

  • Milbrandt JA, Yau MK (2006) A multimoment bulk microphysics parameterization. Part IV: sensitivity experiments. J Atmos Sci 63:3137–3159

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Morrison H, Milbrant J (2010) Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon Weather Rev 139:1103–1130. https://doi.org/10.1175/2010MWR3433.1

    Article  Google Scholar 

  • Morrison H, Pinto JO (2005) Mesoscale modeling of springtime arctic mixed-phase clouds using a new two-moment bulk microphysics scheme. J Atmos Sci 62:3683–3704

    Article  Google Scholar 

  • Morrison H, Curry JA, Khvorostyanov VI (2005) A new double moment microphysics parameterization for application in cloud and climate models. Part I: description. J Atmos Sci 62:1665–1677

    Article  Google Scholar 

  • Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon Weather Rev 137:991–1007. https://doi.org/10.1175/2008MWR2556.1

    Article  Google Scholar 

  • Murakami M (1990) Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—the 19 July CCOPE cloud. J Meteorol Soc Jpn 68:107–128

    Article  Google Scholar 

  • Nasrollahi N, Aghakouchak A, Li J, Gao XG, Hsu K, Sorooshian S (2012) Assessing the impacts of different WRF precipitation physics in hurricane simulations. Weather Forecast 27:1003–1015. https://doi.org/10.1175/WAF-D-10-05000.1

    Article  Google Scholar 

  • Norris JL, Carvalho MV, Jones C, Cannon F (2015) WRF simulations of extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. J Geophys Res Atmos 120:3114–3138. https://doi.org/10.1002/2014JD022592

    Article  Google Scholar 

  • Ojeda GV, Matilde GF, Sonia RCD, Yolanda EP, María J (2016) Evaluation of WRF capability to detect dry and wet periods in Spain using drought indices. J Geophys Res 122(3):1569–1594. https://doi.org/10.1002/2016JD025683

    Article  Google Scholar 

  • Paukert M, Fan J, Rasch PJ, Morrison H, Milbrandt JA, Shpund J, Khain A (2019) Three-moment representation of rain in a bulk microphysics model. J Adv Model Earth Syst 11:257–277. https://doi.org/10.1029/2018MS001512

    Article  Google Scholar 

  • Phillips VTJ, Donner LJ, Garner ST (2007) Nucleation processes in deep convection simulated by a cloud-resolving model with double-moment bulk microphysics. J Atmos Sci 64:738–761

    Article  Google Scholar 

  • Pu Z, Lin C, Dong X, Steven KK (2018) Sensitivity of numerical simulations of a mesoscale convective system to ice hydrometeors in bulk microphysical parameterization. Pure Appl Geophys 176(5):2097–2120. https://doi.org/10.1007/s00024-018-1787-z

    Article  Google Scholar 

  • Qian Q, Lin Y, Luo Y, Zhao X, Zhao Z, Luo Y, Liu X (2018) Sensitivity of a simulated squall line during southern China monsoon rainfall experiment to parameterization of microphysics. J Geophys Res Atmos 123(8):4197–4220. https://doi.org/10.1002/2017JD027734

    Article  Google Scholar 

  • Rama Rao YV, Hatwar HR, Salah AK, Sudhakar Y (2007) An experiment using the high resolution eta and WRF models to forecast heavy precipitation over India. Pure Appl Geophys 164:1593–1615

    Article  Google Scholar 

  • Rasmussen RM, Geresdi I, Thompson G, Manning K, Karplus E (2002) Freezing drizzle formation in stably stratified layer clouds: the role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J Atmos Sci 59:837–860. https://doi.org/10.1175/1520-0469(2002)059<0837:trorco>2.0.co;2

  • Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q J R Meteorol Soc 124:1071–1107

    Article  Google Scholar 

  • Rutledge SA, Hobbs PV (1983) The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: a model for the ‘‘seeder feeder’’ process in warm-frontal rainbands. J Atmos Sci 40:1185–1206. https://doi.org/10.1175/1520-0469(1983)040<1185:tmamsa>2.0.co;2

  • Seifert A, Beheng KD (2001) A double-moment parameterization for simulating auto conversion, accretion and self-collection. Atmos Res 59–60:265–281

    Article  Google Scholar 

  • Seifert A, Beheng KD (2006) A two-moment cloud microphysics scheme parameterization for mixed-phase clouds. Part I: model description. Meteorol Atmos Phys 92:45–66. https://doi.org/10.1007/s00703-005-0112-4

    Article  Google Scholar 

  • Seifert A, Khain A, Blahak U, Beheng KD (2005) Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J Atmos Sci 62(6):1917–1931. https://doi.org/10.1175/jas3432.1

    Article  Google Scholar 

  • Skamarock WC et al. (2008) A description of the advanced research WRF version 3. NCAR Tech, Note NCAR/ TN-4751STR

  • Tao WK, Simpson JS (1993) Goddard cumulus ensemble model. Part I: model description. Terr Atmos Ocean Sci 4:35–72

    Article  Google Scholar 

  • Thompson G, Rasmussen RM, Manning K (2004) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev 132:519–542. https://doi.org/10.1175/1520-0493(2004)132<0519:efowpu>2.0.CO;2

  • Thompson G, Field PR, Rasmussen RM et al (2008) Explicit Forecast of winter precipitation using an improved bulk microphysics scheme. Part II: Implement of a new snow parameterization. Mon Weather Rev 136:5095–5115. https://doi.org/10.1175/2008MWR2387.1

    Article  Google Scholar 

  • Van Weverberg K, Vogelmann AM, Morrison H, Milbrandt JA (2012) Sensitivity of idealized squall line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon Weather Rev 140:1883–1907

    Article  Google Scholar 

  • Wainwright CE, Dawson DT, Xue M, Zhang G (2014) Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. J Appl Meteorol Climatol 53:2072–2090

    Article  Google Scholar 

  • Walko RL, Cotton WR, Meyers MP, Harrington JY (1995) New RAMS cloud microphysics parameterization. Part I: the single-moment scheme. Atmos Res 38:29–62

    Article  Google Scholar 

  • Wang L, Bao Q, Wang WC, Liu YM, Wu GX, Zhou LJ, Li JD, Gong H, Nian GK, Li JX, Wang XC, He B (2019) LASG Global AGCM with a two-moment cloud microphysics scheme: energy balance and cloud radiative forcing characteristics. Adv Atmos Sci 36(7):697–710. https://doi.org/10.1007/s00376-019-8196-9

    Article  Google Scholar 

  • Wu ZY, Jiang CB, Deng B, Chen J, Liu XJ (2016) Sensitivity of WRF simulated typhoon track and intensity over the South China Sea to horizontal and vertical resolutions. Acta Oceanol Sin 38(7):74–83. https://doi.org/10.1007/s13131-019-1459-z

    Article  Google Scholar 

  • Xue L, Fan J, Lebo ZJ, Wu W, Morrison H, Grabowski WW, Chu X et al (2017) Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: dynamic and thermodynamic structure. Mon Weather Rev 145(12):4789–4812. https://doi.org/10.1175/mwr-d-16-0385.1

    Article  Google Scholar 

  • Yang Q, Qiang D, Han D, Chen Y, Zhang S (2018) Sensitivity analysis of raindrop size distribution parameterizations in WRF rainfall simulation. Atmos Res 228:1–13. https://doi.org/10.1016/j.atmosres.2019.05.019

    Article  Google Scholar 

  • Yin L, Ping F, Mao J (2018) Impact of cloud microphysical processes on the simulation of a hailstorm in East China. Atmos Res 219:36–56

    Article  Google Scholar 

  • Zhang M, Wang H, Zhang XY, Peng Y, Che HZ (2018) Applying the WRF double-moment six-class microphysics scheme in the GRAPES_Meso Model: a case study. J Meteorol Res 32(2):246–264. https://doi.org/10.1007/s13351-018-7066-1

    Article  Google Scholar 

  • Ziemer C, Wacker U (2014) A comparative study of B-, Γ- and log-normal distributions in a three-moment parameterization for drop sedimentation. Atmosphere 5(3):484–517. https://doi.org/10.3390/atmos5030484

    Article  Google Scholar 

Download references

Acknowledgements

We would thank to HMS (Hydro-meteorological Service of the DPRK), for providing the observed 3h precipitation data of the study region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kum-Ryong Jo.

Additional information

Responsible Editor: Clemens Simmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Detailed description of the considered microphysical parameterization schemes

  1. a.

    WDM6 scheme

The WRF Double-Moment 6-class (WDM6) Microphysics scheme (Lim et al. 2010) has been developed by adding a double-moment treatment for the warm-rain process into the WRF Single-Moment 6-class (WSM6) Microphysics scheme. The cloud-raindrop size distributions in WDM6 scheme are assumed to the follow the normalized form and can be expressed as:

$$N(D) = N_{{0}} \frac{\alpha }{\Gamma (v)}\lambda^{\alpha v} D^{\alpha v - 1} \exp \left[ { - (\lambda D)^{\alpha } } \right],$$
(4)

where \(\lambda\) is the corresponding slope parameter, \(\alpha\) and \(v\) are the two dispersion parameters (Lim and Hong 2010). Also, \(N_{{0}}\) and \(D\) represent the predicted total number concentration and diameter of drop category (rains and clouds), respectively.

The variable slope parameter is given by:

$$\lambda = \left[ {\frac{\pi }{6}\rho_{{\text{w}}} \frac{\Gamma (\nu + 3/\alpha )}{{\Gamma (\nu )}}\frac{{N_{{0}} }}{{\rho_{{\text{a}}} q}}} \right]^{1/3} ,$$
(5)

where dispersion parameters for the size distribution of rain are chosen as \(\nu\) = 2 and \(\alpha\) = 1, and for the cloud water size distribution are chosen as 1 and 3, respectively.

The governing equation of the number concentration for each species is given by:

$$\frac{{\partial N_{{0}} }}{\partial t} = - {\mathbf{V}} \cdot \nabla_{3} N_{{0}} - \frac{1}{{\rho_{a} }}\frac{\partial }{\partial z}\left( {\rho_{a} N_{{0}} V} \right) + S,$$
(6)

where the first and second terms in the rhs (right hand side) represent the 3-D advection and sedimentation, respectively. The term \(S\) represents the source and sink of number concentration. The number-weighted-mean terminal velocity can be obtained by integrating the terminal velocity of rainwater, which is expressed as:

\(\overline{V}_{{{\text{NR}}}} = \frac{{\int {V_{{\text{R}}} (D_{{\text{R}}} ){\text{d}}N_{{{\text{DR}}}} } }}{{\int {{\text{d}}N_{{{\text{DR}}}} } }} = \frac{{a_{{\text{R}}} }}{{\lambda_{{\text{R}}}^{{b_{{\text{R}}} }} }}\Gamma (2 + b_{{\text{R}}} )\left( {\frac{{\rho_{0} }}{{\rho_{{\text{R}}} }}} \right)^{1/2} ,\) (7)

where the terminal velocity \(V_{{\text{R}}} (D_{{\text{R}}} )\) for a rain particle with diameter \(D_{{\text{R}}}\) is expressed as:

$$V_{{\text{R}}} (D_{{\text{R}}} ) = a_{{\text{R}}} D_{{\text{R}}}^{{b_{{\text{R}}} }} \left( {\frac{{\rho_{0} }}{{\rho_{{\text{R}}} }}} \right)^{1/2} ,$$
(8)

where \(a_{{\text{R}}}\), \(b_{{\text{R}}}\) are the empirical formulas of \(V_{{\text{R}}}\)(\(a_{{\text{R}}}\) = 841.9 \({\text{m}}^{{1 - b_{{\text{R}}} }} \,{\text{s}}^{ - 1}\), \(b_{{\text{R}}}\) = 0.8), \(\rho_{0}\) is air density and \(\rho_{{\text{R}}}\) is density of air at reference state.

In this scheme the number of activated CCN \(n_{a}\) can be expressed as the following:

\(n_{{\text{a}}} = (n + N_{{\text{C}}} )\left( {\frac{{S_{{\text{w}}} }}{{S_{\max } }}} \right)^{k} ,\) (9)

where k is the parameter with a typical range from 0.3 to 1.0 (equal to 0.6 in this study); n is the total CCN number concentration, and NC is the cloud droplets number concentration. SW represents saturation ratio, and Smax is defined as the supersaturation needed to activate the total particle count n + NC, and is set to 0.48%.

The production rate of the cloud water mixing ratio by the CCN activation can be expressed as:

$$P_{{{\text{cact}}}} ({\text{kg}}\,{\text{kg}}^{ - 1} \,{\text{s}}^{ - 1} ) = \frac{{4\pi \rho_{{\text{W}}} }}{{3\rho_{{\text{a}}} }}r_{{{\text{act}}}}^{3} \times N_{{{\text{cact}}}} ({\text{m}}^{ - 3} \,{\text{s}}^{ - 1} ),$$
(10)

where Ncact is the generation rate by activation of the CCN and ract is the initial radius assumed to be the radius activated droplets, which is set as 1.5 µm. \(\rho_{{\text{W}}}\) is the density of water. In addition, the complete evaporation of cloud drops is assumed to return corresponding CCN particles to the total CCN count:

During the autoconversion of cloud water into raindrops, the growth rate of the rain-mixing ratio (Praut) represents as follows:

$$P_{{{\text{raut}}}} = \frac{L}{\tau },$$
(11)

where

$$\tau = 3.7\frac{1}{{\rho_{{\text{a}}} q_{{\text{C}}} }}(0.5 \times 10^{6} \sigma_{{\text{C}}} - 7.5)^{ - 1} = 3.7\frac{1}{{\rho_{{\text{a}}} q_{{\text{C}}} }}\left( {\frac{{0.5 \times 10^{6} }}{{\lambda_{{\text{C}}} }} - 7.5} \right)^{ - 1} .$$
(12)
$$L = 2.7 \times 10^{ - 2} \rho_{{\text{a}}} q_{{\text{C}}} (\frac{1}{16} \times 10^{20} \sigma_{{\text{C}}}^{3} D_{{\text{C}}} - 0.4) = 2.7 \times 10^{ - 2} \rho_{{\text{a}}} q_{{\text{C}}} \left( {\frac{{10^{20} }}{{16\lambda_{{\text{C}}}^{4} }} - 0.4} \right).$$
(13)

\(\sigma_{{\text{C}}}\) is the standard deviation of the raindrop size distribution. The growth rate of rain mixing ratio is calculated only if \(\sigma_{{\text{C}}}\) > 15 µm.

  1. b.

    Thompson scheme

The Thompson microphysical parameterization scheme assumed that snow size distribution depended on both ice water content and temperature and represented as a sum of exponential and gamma distribution (Thompson et al. 2008). The gamma size distribution of hydrometeor species (Table 1) assumed in this scheme is expressed as:

\(N(D) = \frac{{N_{0} }}{\Gamma (\mu + 1)}\lambda^{\mu + 1} D^{\mu } e^{ - \lambda D} ,\) (14) where D is the particle diameter, N0 is the total number of particles in the distribution, \(\mu\) is the shape factor, and \(\lambda\) is the slope parameter (Thompson et al. 2008).

The mass and diameter relationship is given by:

$$m(D) = cD^{d} ,$$
(15)

and the terminal velocity relation as follows:

$$v(D) = \left( {\frac{{\rho_{0} }}{\rho }} \right)^{1/2} \alpha D^{\beta } e^{ - fD} .$$
(16)

In Eqs. (15) and (16), the mass and terminal velocity constants for each/ice species are shown in Table 4.

Table 4 Mass and terminal constants for each liquid/ice species

In this scheme, the amount of cloud water converting to rain is given by:

$$\frac{{{\text{d}}r_{r} }}{{{\text{d}}t}} = \frac{{0.027\rho q_{{\text{c}}} (\frac{1}{16} \times 10^{20} D_{{\text{b}}}^{3} D_{{\text{f}}} - 0.4)}}{{\frac{3.72}{{\rho q_{{\text{c}}} }}\left( {\frac{1}{2} \times 10^{6} D_{{\text{b}}} - 7.5} \right)^{ - 1} }},$$
(17)

where the characteristic diameters, \(D_{{\text{b}}}\) and \(D_{{\text{f}}}\) are obtained as follows:

$$D_{{\text{f}}} = \left( {\frac{{6\rho q_{{\text{c}}} }}{{\pi \rho_{{\text{w}}} N{}_{{\text{c}}}}}} \right)^{1/3} ,$$
(18)
$$D_{{\text{g}}} = \frac{{\left[ {\frac{{\Gamma (\mu_{c} + 7)}}{{\Gamma (\mu_{c} + 4)}}} \right]}}{{\lambda_{{\text{c}}} }}^{1/3} ,\,D_{{\text{b}}} = (D_{{\text{f}}}^{3} D_{{\text{g}}}^{3} - D_{{\text{f}}}^{6} )^{1/6} ,$$
(19)

where \(\rho\) is the moist air density.

  1. c.

    SBU-YLIN scheme

The new State University of New York at Stony Brook bulk microphysical parameterization scheme (SBU-YLIN) is presented that includes a diagnosed riming intensity and its impact on ice characteristics (Lin and Colle 2011). This scheme represents a continuous spectrum from pristine ice particles to heavily rimed particles and graupel using one prognostic variable (precipitating ice) than two separate variables (snow and graupel). The SBU-YLIN scheme uses a generalized gamma distribution to describe the size distribution of cloud water droplets:

$$N(D) = N_{0} D^{\mu } e^{ - \lambda D} ,$$
(20)

where N0 is the intercept, μ is the shape parameter, and λ is the slope. The total number concentration of cloud droplets generally depends on the ambient aerosol distribution and properties. In the SBU-YLIN scheme, the most representative numbers is used for maritime (100 cm−3) and continental air mass (250 cm−3).

The new method in the SBU-YLIN scheme is in the treatment of precipitating ice particles, which have a variety of riming intensities. Power laws have been widely used to describe the mass–diameter (MD), area–diameter (AD), and fall velocity–diameter (VD) relationships for ice particles:

$$M = a_{{\text{m}}} D^{{b_{{\text{m}}} }} ,$$
(21)
$$A = a_{{\text{a}}} D^{{b_{{\text{a}}} }} ,$$
(22)
$$V = a_{{\text{v}}} D^{{b_{{\text{v}}} }} ,$$
(23)

where coefficients (\(a_{{\text{m}}}\), \(b_{{\text{m}}}\), \(a_{{\text{a}}}\), \(b_{{\text{a}}}\), \(a_{{\text{v}}}\), and \(b_{{\text{v}}}\)) are calculated as follows:

$$a_{{\text{m}}} = c_{0} + c_{1} T + c_{2} {\text{Ri,}}$$
(24)
$$b_{{\text{m}}} = c_{0} + c_{1} T + c_{2} {\text{Ri}},$$
(25)
$$a_{{\text{a}}} = d_{0} + d_{1} T + d_{2} {\text{Ri}},$$
(26)
$$b_{{\text{a}}} = D_{0} + D_{1} T + D_{2} {\text{Ri}},$$
(27)
$$a_{{\text{v}}} = av\left( {\frac{{2ga_{{\text{m}}} }}{{\rho_{{\text{a}}} v^{2} a_{{\text{a}}} }}} \right)^{b} ,$$
(28)
$$b_{{\text{v}}} = b(b_{{\text{m}}} - b_{{\text{a}}} + 2) - 1.$$
(29)

In Eqs. (2429), c0 (0.004), c1(6 \(\times\) 10–5), c2 (0.15), C0 (1.85), C1 (0.003), and C2 (1.25), d0 (1.28), d1 (− 0.012), d2 (− 0.6), D0 (1.5), D1 (0.0075), and D2 (0.5) are parameters used in the MD and AD relationships, and g is the gravitational acceleration constant, \(\rho_{{\text{a}}}\) is the air density, v is the kinematic viscosity of the air, a is 1.08, and b is 0.499 (Lin and Colle 2011).

The riming intensity (Ri) can be approximated by the ratio between riming growth rate and the sum of riming and ice depositional growth rate, assuming steady state and saturation with respect to water as riming occurs (Lin and Colle 2011):

$${\text{Ri}} = \frac{{P_{{{\text{rim}}}} }}{{P_{{{\text{rim}}}} + P_{{{\text{dep}}}} }} = \frac{1}{{1 + \frac{F(T)}{{{\text{LWC}}({\text{IWC}})^{0.17} }}}} \approx \frac{1}{{1 + \frac{{6 \times 10^{ - 5} }}{{{\text{LWC}}({\text{IWC}})^{0.17} }}}},$$
(30)

where LWC and IWC refer to liquid water content and ice water content. Riming depends on LWC, IWC, temperature, ice habit, vertical motion, ice particle size, and droplet size.

The parameterization of autoconversion of cloud water to rain is:

$$P_{{{\text{wau}}}} = \left( {\frac{3\rho }{{4\pi \rho_{{\text{w}}} }}} \right)^{2} \kappa_{2} \beta_{6}^{6} N^{ - 1} q_{{\text{c}}}^{3} H(R_{6} - R_{{{\text{6c}}}} ),$$
(31)
$$\beta_{6}^{6} = \frac{{(1 + 3\varepsilon^{2} )(1 + 4\varepsilon^{2} )(1 + 5\varepsilon^{2} )}}{{(1 + \varepsilon^{2} )(1 + 2\varepsilon^{2} )}},$$
(32)
$$R_{6c} = \beta_{6} R_{3c} ,R_{6} = \beta_{6} R_{3} ,$$
(33)

where the coefficient \(\kappa_{2}\) \(\approx\) 1.9 \(\times\) 1011 is in cm−3 s−1, N is the cloud droplet number concentration, \(\varepsilon\) is the relative dispersion, and H is the Heaviside function to consider the threshold process such that the autoconversion rate is negligibly small when R6 < R6c; also, R3 is the mean volume radius and R3c is the threshold mean volume radius (Lin and Colle 2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, KS., Jo, KR. Effect of microphysical schemes on simulation of a rainfall process in the central parts of the Democratic People's Republic of Korea. Meteorol Atmos Phys 133, 1159–1175 (2021). https://doi.org/10.1007/s00703-021-00801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-021-00801-5

Navigation