Skip to main content
Log in

Sensitivity of the simulation of tropical cyclone size to microphysics schemes

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The sensitivity of the simulation of tropical cyclone (TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model (WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes–Ferrier (FER), WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6)–are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size (the inner-core size, especially). In addition, the inclusion of graupel microphysics processes (as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brutsaert, W., 1975. A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res., 11, 543–550, doi: 10.1029/WR011i004p00543.

    Article  Google Scholar 

  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2014. Influence of cloud–radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 1644–1662, doi: 10.1175/JAS-D-13-0265.1.

    Article  Google Scholar 

  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Y. Peng, 2009. Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715–1731, doi: 10.1002/qj.502.

    Article  Google Scholar 

  • Chan, K. T. F., and J. C. L. Chan, 2012. Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811–824, doi: 10.1175/MWR-D-10-05062.1.

    Article  Google Scholar 

  • Chan, K. T. F., and J. C. L. Chan, 2013. Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 3985–4007, doi: 10.1175/MWR-D-12-00204.1.

    Article  Google Scholar 

  • Chan, K. T. F., and J. C. L. Chan, 2014. Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 2235–2248, doi: 10.1002/qj.2292.

    Article  Google Scholar 

  • Chan, K. T. F., and J. C. L. Chan, 2015a. Global climatology of tropical cyclone size as inferred from QuikSCAT data. Int. J. Climatol., 35, 4843–4848, doi: 10.1002/joc.4307.

    Article  Google Scholar 

  • Chan, K. T. F., and J. C. L. Chan, 2015b. Impacts of vortex intensity and outer winds on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 141, 525–537, doi: 10.1002/qj.2374.

    Article  Google Scholar 

  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi: 10.1029/2010GL044558.

    Article  Google Scholar 

  • Chen, S.-H., and W.-Y. Sun, 2002. A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99–118, doi: 10.2151/jmsj.80.99.

    Article  Google Scholar 

  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi: 10.1029/2004GL019460.

    Article  Google Scholar 

  • Fovell, R. G., and H. Su, 2007: Impact of cloud microphysics on hurricane track forecasts. Geophys. Res. Lett., 34, L24810, doi: 10.1029/2007GL031723.

    Article  Google Scholar 

  • Fovell, R. G., K. L. Corbosiero, and H. C. Kuo, 2009. Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 1764–1778, doi: 10.1175/ 2008JAS2874.1.

    Article  Google Scholar 

  • Fovell, R. G., K. L. Corbosiero, A. Seifert, and K. N. Liou, 2010: Impact of cloud-radiative processes on hurricane track. Geophys. Res. Lett., 37, L07808, doi: 10.1029/2010GL042691.

    Article  Google Scholar 

  • Fudeyasu, H., and Y. Q. Wang, 2011. Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer core spin-up process. J. Atmos. Sci., 68, 430–449, doi: 10.1175/2010JAS3523.1.

    Article  Google Scholar 

  • Goerss, J. S., 2000. Tropical cyclone track forecasts using an ensemble of dynamical models. Mon. Wea. Rev., 128, 1187–1193, doi: 10.1175/1520-0493(2000)128<1187:TCTFUA> 2.0.CO;2.

    Article  Google Scholar 

  • Han, J., and H.-L. Pan, 2011. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533, doi: 10.1175/WAF-D-10-05038.1.

    Article  Google Scholar 

  • Heming, J., J. C. L. Chan, and A. M. Radford, 1995. A new scheme for the initialisation of tropical cyclones in the UK Meteorological Office global model. Meteorological Applications, 2, 171–184, doi: 10.1002/met.5060020211.

    Article  Google Scholar 

  • Hill, K. A., and G. M. Lackmann, 2009. Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315, doi: 10.1175/2009MWR2679.1.

    Article  Google Scholar 

  • Hong, S.-Y., and J.-O. J. Lim, 2006. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.

    Google Scholar 

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120, doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO; 2.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/MWR3199.1.

    Article  Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi: 10.1029/2008JD009944.

    Article  Google Scholar 

  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. Garćia-Bustamante, 2012. A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898–918, doi: 10.1175/MWR-D-11-00056.1.

    Article  Google Scholar 

  • Kain, J., 2004. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520- 0450(2004)043<0170:TKCPAU>2.0.CO;2.

    Article  Google Scholar 

  • Kessler, E., 1995. On the continuity and distribution of water substance in atmospheric circulations. Atmospheric Research, 38, 109–145, doi: 10.1016/0169-8095(94)00090-Z.

    Article  Google Scholar 

  • Kimball, S. K., and M. S. Mulekar, 2004. A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 3555–3575, doi: 10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    Article  Google Scholar 

  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014. An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455–476, doi: 10.1175/JCLI-D-13-00096.1.

    Article  Google Scholar 

  • Krishnamurti, T. N., R. Correa-Torres, G. Rohaly, and D. Oosterhof, 1997. Physical initialization and hurricane ensemble forecasts. Wea. Forecasting, 12, 503–514, doi: 10.1175/1520-0434(1997)012<0503:PIAHEF>2.0.CO;2.

    Article  Google Scholar 

  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1990. Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev., 118, 2185–2198, doi: 10.1175/1520-0493(1990)118<2185:PEOHGU>2.0.CO;2.

    Article  Google Scholar 

  • Leslie, L. M., and G. J. Holland. 1995. On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56, 101–110, doi: 10.1007/BF01022523.

    Article  Google Scholar 

  • Leslie, L. M., J. F. Le Marshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, and R. Seecamp, 1998. Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon. Wea. Rev., 126, 1248–1257, doi: 10.1175/1520-0493(1998)126<1248:IHTFFT>2. 0.CO;2.

    Article  Google Scholar 

  • Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2014. Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 3144–3163, doi: 10.1175/JAS-D-13-0312.1.

    Article  Google Scholar 

  • Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2015. Impacts of evaporation of rainwater on tropical cyclone structure and intensity–A revisit. J. Atmos. Sci., 72, 1323–1345, doi: 10.1175/JAS-D-14-0224.1.

    Article  Google Scholar 

  • Li, X. L., and Z. X. Pu, 2008. Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 4819–4838, doi: 10.1175/2008MWR2366.1.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi: 10.1175/1520-0450(1983)022 <1065:BPOTSF>2.0.CO;2.

    Article  Google Scholar 

  • Liu, K. S., and J. C. L. Chan, 2002. Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon.Wea. Rev., 130, 2134–2142, doi: 10.1175/ 1520-0493(2002)130<2134:SFPAWS>2.0.CO;2.

    Article  Google Scholar 

  • Merrill, R. T., 1984. A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 1408–1418, doi: 10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    Article  Google Scholar 

  • Miyoshi, T., T. Komori, H. Yonehara, R. Sakai, and M. Yamaguchi, 2010. Impact of resolution degradation of the initial condition on typhoon track forecasts. Wea. Forecasting, 25, 1568–1573, doi: 10.1175/2010WAF2222392.1.

    Article  Google Scholar 

  • Rappaport, E. N., and Coauthors, 2009. Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395–419, doi: 10.1175/2008WAF2222128.1.

    Article  Google Scholar 

  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]

    Google Scholar 

  • Rogers, R., and Coauthors, 2006. The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 1523–1537, doi: 10.1175/BAMS-87-11-1523.

    Article  Google Scholar 

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw v3.pdf.]

    Google Scholar 

  • Smith, R. K., C. W. Schmidt, and M. T. Montgomery, 2011. An investigation of rotational influences on tropical-cyclone size and intensity. Quart. J. Roy. Meteor. Soc., 137, 1841–1855, doi: 10.1002/qj.862.

    Article  Google Scholar 

  • Srinivas, C. V., R. Venkatesan, D. V. Bhaskar Rao, and D. Hari Prasad, 2007. Numerical simulation of Andhra severe cyclone (2003): Model sensitivity to the boundary layer and convection parameterization. Pure Appl. Geophys., 164, 1465–1487, doi: 10.1007/s00024-007-0228-1.

    Article  Google Scholar 

  • Sun, Y., Z. Zhong, and W. Lu, 2015. Sensitivity of tropical cyclone feedback on the intensity of the western Pacific subtropical high to microphysics schemes. J. Atmos. Sci., 72, 1346–1368, doi: 10.1175/JAS-D-14-0051.1.

    Article  Google Scholar 

  • Tao, W-K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Peters-Lidard, and A. Hou, 2011. The impact of microphysical schemes on hurricane intensity and track. Asia-Pacific Journal of Atmospheric Sciences., 47, 1–16, doi: 10.1007/s13143-011-1001-z.

    Article  Google Scholar 

  • Tewari, M., and Coauthors, 2004. Implementation and verification of the unified Noah land surface model in the WRF model. Presented at the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, Wash., Amer. Meteor. Soc.

    Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, doi: 10.1175/1520-0493(1989)117<1779: ACMFSF>2.0.CO;2.

    Article  Google Scholar 

  • Torn, R. D., 2010. Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 4375–4392, doi: 10.1175/2010MWR3361.1.

    Article  Google Scholar 

  • Wang, Y. Q., 2002. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model-TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 3022–3036, doi: 10.1175/1520-0493(2002)130<3022:AESOTC>2. 0.CO;2.

    Article  Google Scholar 

  • Wang, Y. Q., 2009. How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273, doi: 10.1175/2008JAS2737.1.

    Article  Google Scholar 

  • Wang, Y. Q., 2012. Recent research progress on tropical cyclone structure and intensity. Tropical Cyclone Research and Review, 1, 254–275, doi: 10.6057/2012TCRR02.05.

    Google Scholar 

  • Xu, J., and Y. Q. Wang, 2010a. Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831–1852, doi: 10.1175/2010JAS3387.1.

    Article  Google Scholar 

  • Xu, J., and Y. Q. Wang, 2010b. Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 4135–4157, doi: 10.1175/2010MWR3335.1.

    Article  Google Scholar 

  • Yang, M.-J., and L. Ching, 2005. A modeling study of Typhoon Toraji (2001): Physical parameterization sensitivity and topographic effect. Terrestrial, Atmospheric and Oceanic Sciences, 16, 177–213.

    Google Scholar 

  • Yuan, J. N., X.D. Wang, Q.L. Wan, and C.X. Liu, 2007. A 28-year climatological analysis of size parameters for Northwestern Pacific tropical cyclones. Adv. Atmos. Sci., 24, 24–34, doi: 10.1007/s00376-007-0024-y.

    Article  Google Scholar 

  • Zhang, C. X., Y.Q. Wang, and K. Hamilton, 2011. Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513, doi: 10.1175/MWR-D-10-05091.1.

    Article  Google Scholar 

  • Zhu, T., and D.-L. Zhang, 2006. The impact of the storm-induced SST cooling on hurricane intensity. Adv. Atmos. Sci., 23, 14–22, doi: 10.1007/s00376-006-0002-9.

    Article  Google Scholar 

  • Zou, X. L., and Q. N. Xiao, 2000. Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836–860, doi: 10.1175/1520-0469(2000)057<0836:SOTIAS>2.0.CO;2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin T. F. Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K.T.F., Chan, J.C.L. Sensitivity of the simulation of tropical cyclone size to microphysics schemes. Adv. Atmos. Sci. 33, 1024–1035 (2016). https://doi.org/10.1007/s00376-016-5183-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5183-2

Key words

Navigation