Skip to main content
Log in

The 5-HT1A-receptor agonist flibanserin reduces drug-induced dyskinesia in RGS9-deficient mice

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Drug-induced dyskinesia is a major complication of dopamine replacement therapy in advanced Parkinson’s disease consisting of dystonia, chorea and athetosis. Agonists at 5-HT1A-receptors attenuate levodopa-induced motor complications in non-human primates. Mice with increased dopamine D2 receptor (DRD2) signalling due to the lack of expression of the regulator of G-protein signalling 9 (RGS9) also develop dyskinesia following levodopa treatment. We investigated whether the 5-HT1A-receptor agonist flibanserin compared with buspirone reduces motor abnormalities induced by levodopa or quinelorane, a selective dopamine D2-receptor agonist. Following dopamine depletion via reserpine, 40 mice (20 wild-type and 20 RGS9 knock-out) were treated with flibanserin or buspirone in combination with levodopa or quinelorane. Motor behaviour was analysed using open field analysis. RGS9 knock-out mice displayed significantly more drug-induced dystonia (p < 0.04; t test) than wild type. In quinelorane-treated wild-type mice flibanserin as well as buspirone significantly reduced dystonia (p < 0.05). In RGS9 knock-out animals again both reduced quinelorane-induced dystonia. However, flibanserin was significantly more effective (p = 0.003). Following reserpine pretreatment and administration of levodopa wild-type and RGS 9 knock-out mice showed mild to moderate dystonia. Surprisingly, 10 mg/kg buspirone increased dystonia in both animal groups, whereas it was decreased by 10 mg/kg flibanserin. However, compared with levodopa alone only the increase of dystonia by buspirone was significant (p < 0.04). Flibanserin showed promising antidyskinetic effects in a model of drug-induced dyskinesia. Our data underline the possible benefit of 5-HT1A agonists in drug-induced dyskinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro L (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58(3):193–199

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Berthet A, Bezard E (2009) Dopamine receptors and L-dopa-induced dyskinesia. Parkinsonism Relat Disord 15(Suppl 4):S8–S12

    Article  PubMed  Google Scholar 

  • Blundell J, Hoang CV, Potts B, Gold SJ, Powell CM (2008) Motor coordination deficits in mice lacking RGS9. Brain Res 1190:78–85

    Article  PubMed  CAS  Google Scholar 

  • Bonifati V, Fabrizio E, Cipriani R, Vanacore N, Meco G (1994) Buspirone in levodopa-induced dyskinesias. Clin Neuropharmacol 17(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Brambilla A, Grippa N, Pitsikas N (1999) Behavioral effects of flibanserin (BIMT 17). Pharmacol Biochem Behav 64(1):137–146

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Evans K, Jason K, Rohde F, Alexander B, Pollentier S (2002) Pharmacology of flibanserin. CNS Drug Rev 8(2):117–142

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925

    Article  PubMed  Google Scholar 

  • Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 20(8):919–931

    Article  PubMed  Google Scholar 

  • Cabrera-Vera TM, Hernandez S, Earls LR, Medkova M, Sundgren-Andersson AK, Surmeier DJ, Hamm HE (2004) RGS9-2 modulates D2 dopamine receptor-mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proc Natl Acad Sci USA 101(46):16339–16344

    Article  PubMed  CAS  Google Scholar 

  • Castro JPMV, Frussa-Filho R, Fukushiro DF, Silva RH, Medrano WA, Ribeiro R de A, Abílio VC (2006) Effects of baclofen on reserpine-induced vacuous chewing movements in mice. Brain Res Bull 68(6):436–441

  • Chase TN (1998) The significance of continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Drugs 55(Suppl 1):1–9

    Article  PubMed  Google Scholar 

  • Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI (2000) Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403(6769):557–560

    Article  PubMed  CAS  Google Scholar 

  • Clayton AH, Dennerstein L, Pyke R, Sand M (2010) Flibanserin: a potential treatment for Hypoactive Sexual Desire Disorder in premenopausal women. Women’s Health (Lond Engl) 6(5):639–653

    Article  CAS  Google Scholar 

  • D’Aquila P, Monleon S, Borsini F, Brain P, Willner P (1997) Anti-anhedonic actions of the novel serotonergic agent flibanserin, a potential rapidly-acting antidepressant. Eur J Pharmacol 340(2–3):121–132

    Article  PubMed  Google Scholar 

  • Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W (2006) Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull 69(3):318–326

    Article  PubMed  CAS  Google Scholar 

  • Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of l-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 179(1):76–89

    Article  PubMed  CAS  Google Scholar 

  • Del Sorbo F, Albanese A (2008) Levodopa-induced dyskinesias and their management. J Neurol 255(Suppl 4):32–41

    Article  PubMed  Google Scholar 

  • Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. British J Pharmacol 164(4):1357–1391

    Article  CAS  Google Scholar 

  • Eskow KL, Gupta V, Alam S, Park JY, Bishop C (2007) The partial 5-HT(1A) agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav 87(3):306–314

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Beck J, Riederer P, van den Buuse M (2011) Flibanserin attenuates l-DOPA-sensitized contraversive circling in the unilaterally 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J Neural Transm 118:1727–1732

    Article  PubMed  CAS  Google Scholar 

  • Gold SJ, Hoang CV, Potts BW, Porras G, Pioli E, Kim KW, Nadjar A (2007) RGS9-2 negatively modulates l-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson’s disease. J Neurosci 27(52):14338–14348

    Article  PubMed  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1)

  • Jankovic J (2005) Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord 20(Suppl 11):S11–S16

    Article  PubMed  Google Scholar 

  • Kleedorfer B, Lees AJ, Stern GM (1991) Buspirone in the treatment of levodopa induced dyskinesias. J Neurol Neurosurg Psychiatry 54(4):376–377

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Assié MB, Koek W (1997) Pharmacological characterization of in vivo properties of putative mixed 5-HT1A agonist/5-HT(2A/2C) antagonist anxiolytics II drug discrimination and behavioral observation studies in rats. J Pharmacol Exp Therapeutics 282(2):747–759

    CAS  Google Scholar 

  • Kovoor A, Seyffarth P, Ebert J, Barghshoon S, Chen CK, Schwarz S, Axelrod JD (2005) D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J Neurosci 25(8):2157–2165

    Article  PubMed  CAS  Google Scholar 

  • Kreitzer AC, Malenka RC (2005) Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 25(45):10537–10545

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Riddle LR, Griffin SA, Chu W, Vangveravong S, Neisewander J, Mach RH (2009) Evaluation of D2 and D3 dopamine receptor selective compounds on L-dopa-dependent abnormal involuntary movements in rats. Neuropharmacology 56(6-7):956–969

    Google Scholar 

  • LaHoste GJ, Marshall JF (1994) Rapid development of D1 and D2 dopamine receptor supersensitivity as indicated by striatal and pallidal Fos expression. Neurosci Lett 179(1–2):153–156

    Article  PubMed  CAS  Google Scholar 

  • Lanfumey L, Hamon M (2004) 5-HT1 receptors. Curr Drug Targets CNS Neurol Disord 3(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Lenzer J (2010) Boehringer Ingelheim withdraws libido drug for women. BMJ (Clinical Research Ed) 341:c5701

  • Liou Y-J, Chen M-L, Wang Y-C, Chen J-Y, Liao D-L, Bai Y-M, Lin C–C (2009) Analysis of genetic variations in the RGS9 gene and antipsychotic-induced tardive dyskinesia in schizophrenia. Am J Med Genet Part B Neuropsychiatric Genet 150B(2):239–242. doi:101002/ajmgb30796

    Google Scholar 

  • Lopez A, Munoz A, Guerra MJ, Labandeira-Garcia JL (2001) Mechanisms of the effects of exogenous levodopa on the dopamine-denervated striatum. Neuroscience 103(3):639–651

    Article  PubMed  CAS  Google Scholar 

  • Lundblad M, Usiello A, Carta M, Håkansson K, Fisone G, Cenci MA (2005) Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia. Exp Neurol 194(1):66–75

    Article  PubMed  CAS  Google Scholar 

  • Marin C, Aguilar E, Rodríguez-Oroz MC, Bartoszyk GD, Obeso JA (2009) Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Psychopharmacology 204(2):241–250

    Article  PubMed  CAS  Google Scholar 

  • Muenter MD, Sharpless NS, Tyce GM, Darley FL (1977) Patterns of dystonia (“I-D-I” and “D-I-D-”) in response to l-dopa therapy for Parkinson’s disease. Mayo Clin Proc Mayo Clin 52(3):163–174

    CAS  Google Scholar 

  • Muñoz A, Carlsson T, Tronci E, Kirik D, Björklund A, Carta M (2009) Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol 219(1):298–307

    Article  PubMed  Google Scholar 

  • Nagakura Y, Oe T, Aoki T, Matsuoka N (2009) Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: a putative animal model of fibromyalgia. Pain 146(1–2):26–33

    Article  PubMed  CAS  Google Scholar 

  • Osei-Owusu P, Scrogin KE (2004) Buspirone raises blood pressure through activation of sympathetic nervous system and by direct activation of alpha1-adrenergic receptors after severe hemorrhage. J Pharmacol Exp Therapeutics 309(3):1132–1140

    Article  CAS  Google Scholar 

  • Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P, Fisone G, Cenci MA (2003) Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6(5):501–506

    PubMed  CAS  Google Scholar 

  • Podhorna J, Brown RE (2000) Flibanserin has anxiolytic effects without locomotor side effects in the infant rat ultrasonic vocalization model of anxiety. Br J Pharmacol 130(4):739–746

    Article  PubMed  CAS  Google Scholar 

  • Rahman Z, Gold SJ, Potenza MN, Cowan CW, Ni YG, He W, Wensel TG (1999) Cloning and characterization of RGS9-2: a striatal-enriched alternatively spliced product of the RGS9 gene. J Neurosci 19(6):2016–2026

    PubMed  CAS  Google Scholar 

  • Rahman Z, Schwarz J, Gold SJ, Zachariou V, Wein MN, Choi KH, Kovoor A (2003) RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38(6):941–952

    Article  PubMed  CAS  Google Scholar 

  • Rohrer DK, Kobilka BK (1998) G protein-coupled receptors: functional and mechanistic insights through altered gene expression. Physiol Rev 78(1):35–52

    PubMed  CAS  Google Scholar 

  • Scholz B, Svensson M, Alm H, Sköld K, Fälth M, Kultima K, Guigoni C (2008) Striatal proteomic analysis suggests that first l-dopa dose equates to chronic exposure. PloS One 3(2):e1589

    Google Scholar 

  • Seeman P, Schwarz J, Chen J-F, Szechtman H, Perreault M, McKnight GS, Roder JC (2006) Psychosis pathways converge via D2high dopamine receptors. Synapse 60(4):319–346

    Google Scholar 

  • Stahl SM, Sommer B, Allers KA (2011) Multifunctional pharmacology of flibanserin: possible mechanism of therapeutic action in hypoactive sexual desire disorder. J Sex Med 8(1):15–27

    Article  PubMed  CAS  Google Scholar 

  • Strecker K, Wegner F, Hesse S, Becker G-A, Patt M, Meyer PM, Lobsien D (2011) Preserved serotonin transporter binding in de novo Parkinson’s disease: negative correlation with the dopamine transporter. J Neurol 258(1):19–26

    Google Scholar 

  • Tanabe M, Hashimoto M, Ono H (2008) Imidazoline I(1) receptor-mediated reduction of muscle rigidity in the reserpine-treated murine model of Parkinson’s disease. Eur J Pharmacol 589(1–3):102–105

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in l-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. NeuroReport 10(3):631–634

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama M, Kimura T, Maeda T, Kannari K, Matsunaga M, Baba M (2005) A serotonin 5-HT1A receptor agonist prevents behavioral sensitization to l-DOPA in a rodent model of Parkinson’s disease. Neurosci Res 52(2):185–194

    Article  PubMed  CAS  Google Scholar 

  • Visanji NP, Fox SH, Johnston TH, Millan MJ, Brotchie JM (2009) Alpha1-adrenoceptors mediate dihydroxyphenylalanine-induced activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaques. J Pharmacol Exper Therapeutics 328(1):276–283

    Article  CAS  Google Scholar 

  • Volta M, Mabrouk OS, Bido S, Marti M, Morari M (2010) Further evidence for an involvement of nociceptin/orphanin FQ in the pathophysiology of Parkinson’s disease: a behavioral and neurochemical study in reserpinized mice. J Neurochem 115(6):1543–1555

    Article  PubMed  CAS  Google Scholar 

  • Wacan JJ, Reichel CM, Farley CM, McDougall SA (2006) The partial dopamine D2-like receptor agonist terguride functions as an agonist in preweanling rats after a 5-day reserpine regimen. Psychopharmacology 185(1):104–111

    Article  PubMed  CAS  Google Scholar 

  • Yin L–L, Cao Y, Xie K-Q (2010) Decreased RGS9 protein level in the striatum of rodents undergoing MPTP or 6-OHDA neurotoxicity. Neurosci Lett 479(3):231–235

    Article  PubMed  CAS  Google Scholar 

  • Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R, Berton O, Neve RL (2003) Essential role for RGS9 in opiate action. Proc Natl Acad Sci USA 100(23):13656–13661

    Google Scholar 

  • Zesiewicz TA, Sullivan KL, Hauser RA (2007) Levodopa-induced dyskinesia in Parkinson’s disease: epidemiology, etiology, and treatment. Curr Neurol Neurosci Reports 7(4):302–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Strecker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strecker, K., Adamaszek, M., Ohm, S. et al. The 5-HT1A-receptor agonist flibanserin reduces drug-induced dyskinesia in RGS9-deficient mice. J Neural Transm 119, 1351–1359 (2012). https://doi.org/10.1007/s00702-012-0815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0815-x

Keywords

Navigation