Skip to main content
Log in

The partial dopamine D2-like receptor agonist terguride functions as an agonist in preweanling rats after a 5-day reserpine regimen

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Treating children and adolescents with partial D2-like agonists is becoming increasingly common, although few developmental animal studies have assessed the psychopharmacology of this class of drug. Contrary to results from adult rat studies, it has been reported that partial D2-like agonists may not induce agonist-like behavioral effects in preweanling rats during states of low dopaminergic tone.

Objective

The purpose of the present study was to determine whether a partial D2-like agonist would act as an agonist in preweanling rats after a 5-day regimen of the dopamine-depleting agent reserpine or the tyrosine hydroxylase inhibitor α-methyl-dl-p-tyrosine (AMPT). Methods: Sprague–Dawley rats were pretreated with reserpine (1 mg kg-1 per day) or AMPT (3×200 mg kg-1 per day) on postnatal day (PD) 16–PD 20. Either 2 h (AMPT) or 5 h (reserpine) after the last pretreatment injection, rats were treated with saline, the partial D2-like agonist terguride, or the full D2-like agonist R(−)-propylnorapomorphine (NPA). Distance traveled and repetitive motor movements were measured for 60 min.

Results

After repeated reserpine treatment, both terguride and NPA increased the distance-traveled scores of preweanling rats; however, only NPA, but not terguride, increased distance-traveled scores after a 5-day regimen of AMPT or an acute injection of reserpine.

Conclusions

It is now apparent that partial D2-like agonists are capable of inducing agonist-like behavioral effects in preweanling rats during a state of low dopaminergic tone. For agonistic actions to be observed, the pretreatment regimen must result in substantial and prolonged dopamine depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnt J (1983) Differential behavioural effects of dopamine agonists in developing rats: a study of 3-PPP enantiomers. Eur J Pharmacol 91:273–278

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J (1984) Postsynaptic dopamine agonistic effects of 3-PPP enantiomers revealed by bilateral 6-hydroxy-dopamine lesions and by chronic reserpine treatment in rats. J Neural Transm 60:205–223

    Article  PubMed  CAS  Google Scholar 

  • Arnt J, Hyttel J (1990) Dopamine D-2 agonists with high and low efficacies: differentiation by behavioural techniques. J Neural Transm 80:33–50

    Article  CAS  Google Scholar 

  • Barzman DH, DelBello MP, Kowatch RA, Gernert B, Fleck DE, Pathak S, Rappaport K, Delgado SV, Campbell P, Strakowski SM (2004) The effectiveness and tolerability of aripiprazole for pediatric bipolar disorders: a retrospective chart review. J Child Adolesc Psychopharmacol 14:593–600

    Article  PubMed  Google Scholar 

  • Biederman J, McDonnell MA, Wozniak J, Spencer T, Aleardi M, Falzone R, Mick E (2005) Aripiprazole in the treatment of pediatric bipolar disorder: a systematic chart review. CNS Spectr 10:141–148

    PubMed  Google Scholar 

  • Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • Burt DR, Creese I, Snyder SH (1977) Antipsychotic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196:326–328

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1983) Dopamine receptor agonists: intrinsic activity vs. state of the receptor. J Neural Transm 57:309–315

    Article  PubMed  CAS  Google Scholar 

  • Chipkin RE, McQuade RD, Iorio LC (1987) D1 and D2 dopamine binding site up-regulation and apomorphine-induced stereotypy. Pharmacol Biochem Behav 28:477–482

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Hjorth S, Carlsson A (1985a) Dopamine-receptor agonists: mechanisms underlying autoreceptor selectivity. I. Review of the evidence. J Neural Transm 62:1–52

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Hjorth S, Carlsson A (1985b) Dopamine receptor agonists: mechanisms underlying autoreceptor selectivity. II. Theoretical considerations. J Neural Transm 62:171–207

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Furmidge LJ, Petry N, Tong Z-Y, Ericsson M, Johnson D (1991) Behavioural profile of partial D2 dopamine receptor agonists. I. Atypical inhibition of d-amphetamine-induced locomotor hyperactivity and stereotypy. Psychopharmacology (Berl) 105:381–392

    Article  CAS  Google Scholar 

  • Drukarch B, Stoof JC (1990) D-2 dopamine autoreceptor selective drugs: do they really exist? Life Sci 47:361–376

    Article  PubMed  CAS  Google Scholar 

  • Findling RL, Blumer J, Kauffman R, Batterson J, Gilbert D, Bramer S, Marcus R (2003) Aripiprazole in pediatric conduct disorder: a pilot study. Eur Neuropsychopharmacol 13(Suppl 4):S335

    Article  Google Scholar 

  • Hjorth S, Carlsson A, Clark D, Svensson K, Wikstrom H, Sanchez D, Lindberg P, Hacksell U, Arvidsson LE, Johansson A, Nilsson JLG (1983) Central dopamine receptor agonist and antagonist actions of the enantiomers of 3-PPP. Psychopharmacology (Berl) 81:89–99

    Article  CAS  Google Scholar 

  • Hjorth S, Clark D, Carlsson A (1988) Dopamine (DA) autoreceptor efficacy of 3-PPP enantiomers after short-term synaptic DA deprivation. Eur J Pharmacol 152:207–215

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Boddeke HWGM (1993) Partial agonists, full agonists: dilemmas of definition. Trends Pharmacol Sci 14:270–275

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN (1991) Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. II. Effects of 6-hydroxydopamine or colchicine microinjections into the VTA or reserpine treatment. Exp Neurol 113:277–290

    Article  PubMed  CAS  Google Scholar 

  • Kohler WC, Herbster G (1987) Terguride, a mixed dopamine agonist–antagonist, in animal models of Parkinson’s disease. Neurology 37:723–727

    Google Scholar 

  • LaHoste GJ, Marshall JF (1992) Dopamine supersensitivity and D1/D2 synergism are unrelated to changes in striatal receptor density. Synapse 12:14–26

    Article  PubMed  CAS  Google Scholar 

  • LaHoste GJ, Yu J, Marshall JF (1993) Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc Natl Acad Sci USA 90:7451–7455

    Article  PubMed  CAS  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    Article  PubMed  CAS  Google Scholar 

  • Leff SE, Gariano R, Creese I (1984) Dopamine receptor turnover rates are age-dependent. Proc Natl Acad Sci USA 81:3910–3914

    Article  PubMed  CAS  Google Scholar 

  • McDougall SA, Hernandez RM, Reichel CM, Farley CM (2005) The partial D2-like dopamine receptor agonist terguride acts as a functional antagonist in states of high and low dopaminergic tone: evidence from preweanling rats. Psychopharmacology (Berl) 178:431–439

    Article  CAS  Google Scholar 

  • Meller E, Bohmaker K, Namba Y, Friedhoff AJ, Goldstein M (1987) Relationship between receptor occupancy and response at striatal autoreceptors. Mol Pharmacol 31:592–598

    PubMed  CAS  Google Scholar 

  • Meller E, Enz A, Goldstein M (1988) Absence of receptor reserve at striatal dopamine receptors regulating cholinergic neuronal activity. Eur J Pharmacol 155:151–154

    Article  PubMed  CAS  Google Scholar 

  • Moody CA, Spear LP (1992) Effects of acute dopamine depletion on responsiveness to D1 and D2 receptor agonists in infant and weanling rat pups. Psychopharmacology (Berl) 107:39–49

    Article  CAS  Google Scholar 

  • Murphy TK, Bengtson MA, Soto O, Edge PJ, Sajid MW, Shapira N, Yang M (2005) Case series on the use of aripiprazole for Tourette syndrome. Int J Neuropsychopharmacol 8:489–490

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (2003) Guidelines for the care and use of mammals in neuroscienceand behavioral research. National Academy Press, Washington, DC

    Google Scholar 

  • Orsini C, Koob GF, Pulvirenti L (2001) Dopamine partial agonist reverses amphetamine withdrawal in rats. Neuropsychopharmacology 25:789–792

    Article  PubMed  CAS  Google Scholar 

  • Pulvirenti L, Koob GF (1994) Dopamine receptor agonists, partial agonists and psychostimulant addiction. Trends Pharmacol Sci 15:374–379

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein M, Gershanik O, Stefano FJ (1988) Different roles of D-1 and D-2 dopamine receptors involved in locomotor activity of supersensitive mice. Eur J Pharmacol 148:419–426

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein M, Muschietti JP, Gershanik O, Flawia MM, Stefano FJ (1990) Adaptive mechanisms of striatal D1 and D2 dopamine receptors in response to a prolonged reserpine treatment in mice. J Pharmacol Exp Ther 252:810–816

    PubMed  CAS  Google Scholar 

  • Sibole JM, Matea PJ, Krall CM, McDougall SA (2003) Effects of a partial dopamine D2-like agonist on the cocaine-induced behavioral sensitization of preweanling rats. Pharmacol Biochem Behav 76:27–34

    Article  PubMed  CAS  Google Scholar 

  • Stigler KA, Posey DJ, McDougle CJ (2004) Aripiprazole for maladaptive behavior in pervasive developmental disorders. J Child Adolesc Psychopharmacol 14:455–463

    Article  PubMed  Google Scholar 

  • Svensson K, Ekman A, Piercey MF, Hoffmann WE, Lum JT, Carlsson A (1991) Effects of the partial dopamine receptor agonists SDZ 208-911, SDZ 208-912 and terguride on central monoamine receptors. A behavioral, biochemical and electrophysiological study. Naunyn Schmiedebergs Arch Pharmacol 344:263–274

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H, Dorow R (1983) Dual action on central dopamine function of transdihydrolisuride, a 9,10-dihydrogenated analogue of the ergot dopamine agonist lisuride. Life Sci 32:421–432

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H, Rettig K-J, Seltz A (1984) The central dopamine agonistic action of transdihydrolisuride is unmasked at supersensitive receptors. Naunyn Schmiedebergs Arch Pharmacol 325:R80

    Article  Google Scholar 

  • Zorrilla EP (1997) Multiparous species present problems (and possibilities) to developmentalists. Dev Psychobiol 30:141–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Cynthia Crawford for her expertise with the dopamine content assays. This work was partially supported by an ASI research grant (CSUSB) to J.J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanders A. McDougall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wacan, J.J., Reichel, C.M., Farley, C.M. et al. The partial dopamine D2-like receptor agonist terguride functions as an agonist in preweanling rats after a 5-day reserpine regimen. Psychopharmacology 185, 104–111 (2006). https://doi.org/10.1007/s00213-005-0263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0263-5

Keywords

Navigation