Skip to main content

Advertisement

Log in

Iron chelation and neuroprotection in neurodegenerative diseases

  • Movement Disorders - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Iron is an essential element for multiple functions of the brain. Maintenance of iron homeostasis involves regulation of iron influx, iron efflux and iron storage. Mismanagement of brain iron has been implicated in neuronal injury and death in several neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (PD) and Amyotrophic lateral sclerosis (ALS). Multiple iron chelators have been shown neuroprotective and neurorestorative in these diseases, suggesting that iron chelation might be a promising therapeutics. In this paper, we briefly review the new findings of biological function of several molecules that regulate iron homeostasis in the brain, the possible role of iron mismanagement in the pathogenesis of PD, AD and ALS, and then discuss the putative mechanisms for current available iron chelators as potential therapeutics for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amit T, Avramovich-Tirosh Y, Youdim MB et al (2008) Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. FASEB J 22:1296–1305

    Article  PubMed  CAS  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    PubMed  CAS  Google Scholar 

  • Avramovich-Tirosh Y, Reznichenko L, Mit T et al (2007) Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelatingantioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res 4:403–411

    Article  PubMed  CAS  Google Scholar 

  • Avramovich-Tirosh Y, Bar-Am O, Amit T et al (2009) Up-regulation of Hypoxia-Inducible Factor (HIF)-1alpha and HIF-Target Genes in Cortical Neurons by the Novel Multifunctional Iron Chelator Anti-Alzheimer Drug, M30. Curr Alzheimer Res [epub ahead of print]

  • Bartzokis G, Lu PH, Tishler TA et al (2010) Prevalent iron metabolism gene variants associated with increased brain ferritin iron in healthy older men. J Alzheimers Dis 20:333–341

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72:1436–1440

    Article  PubMed  Google Scholar 

  • Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Cantu D, Schaack J, Patel M (2009) Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures. PLoS One 4:e7095

    Article  PubMed  Google Scholar 

  • Castellani RJ, Moreira PI, Liu G et al (2007) Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 32:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Cozzi A, Rovelli E, Frizzale G et al (2010) Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol Dis 37:77–85

    Article  PubMed  CAS  Google Scholar 

  • Crouch PJ, White AR, Bush AI (2007) The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer’s disease. FEBS J 274:3775–3783

    Article  PubMed  CAS  Google Scholar 

  • Dong XP, Cheng X, Mills E et al (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996

    Article  PubMed  CAS  Google Scholar 

  • Double KL, Halliday GM (2006) New face of neuromelanin. J Neural Transm Suppl 70:119–123

    Article  PubMed  CAS  Google Scholar 

  • Gal S, Zheng H, Fridkin M et al (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 17:15–27

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, Rathore KI, Schulz K et al (2009) Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29:610–619

    Article  PubMed  CAS  Google Scholar 

  • Jiang D, Li X, Williams R et al (2009) Ternary complexes of iron, amyloid-beta, and nitrilotriacetic acid: binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer’s disease. Biochemistry 48:7939–7947

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Mao Y, Mao X et al (2010) Neuroglobin expression in ischemic stroke. Stroke 41:557–559

    Article  PubMed  CAS  Google Scholar 

  • Johansson AC, Appelqvist H, Nilsson C et al (2010) Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15:527–540

    Article  PubMed  CAS  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909

    Article  PubMed  CAS  Google Scholar 

  • Kupershmidt L, Weinreb O, Amit T et al (2009) Neuroprotective and neuritogenic activities of novel multimodal iron-chelating drugs in motor-neuron-like NSC-34 cells and transgenic mouse model of amyotrophic lateral sclerosis. FASEB J 23:3766–3779

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Rajagopalan S, Siddiq A et al (2009) Inhibition of prolyl hydroxylase protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity: model for the potential involvement of the hypoxia-inducible factor pathway in Parkinson disease. J Biol Chem 284:29065–29076

    Article  PubMed  CAS  Google Scholar 

  • Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    PubMed  CAS  Google Scholar 

  • Lovell MA, Xiong S, Xie C et al (2004) Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis 6:659–671

    PubMed  CAS  Google Scholar 

  • Mastroberardino PG, Hoffman EK, Horowitz MP et al (2009) A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis 34:417–431

    Article  PubMed  CAS  Google Scholar 

  • McCormack AL, Atienza JG, Johnston LC et al (2005) Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochem 93:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Sayre LM, Zhu X et al (2010) Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease. Methods Mol Biol 610:419–434

    Article  PubMed  CAS  Google Scholar 

  • Ong WY, Farooqui AA (2005) Iron, neuroinflammation, and Alzheimer’s disease. J Alzheimers Dis 8:183–200

    PubMed  CAS  Google Scholar 

  • Ortega R, Cloetens P, Devès G et al (2007) Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PLoS One 2:e925

    Article  PubMed  Google Scholar 

  • Perez CA, Tong Y, Guo M (2008) Iron chelators as potential therapeutic agents for Parkinson’s disease. Curr Bioact Compd 4:150–158

    Article  PubMed  CAS  Google Scholar 

  • Quintana C, Bellefqih S, Laval JY et al (2006) Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153:42–54

    Article  PubMed  CAS  Google Scholar 

  • Reznichenko L, Kalfon L, Amit T et al (2010) low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in mptp-induced parkinsonism. Neurodegener Dis [epub ahead of print]

  • Rhodes SL, Ritz B (2008) Genetics of iron regulation and the possible role of iron in Parkinson’s disease. Neurobiol Dis 32:183–195

    Article  PubMed  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105:18578–18583

    Article  PubMed  CAS  Google Scholar 

  • Snyder AM, Connor JR (2009) Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta 1790:606–614

    PubMed  CAS  Google Scholar 

  • Song N, Wang J, Jiang H et al (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med 48:332–341

    Article  PubMed  CAS  Google Scholar 

  • Whitnall M, Richardson DR (2006) Iron: a new target for pharmacological intervention in neurodegenerative diseases. Semin Pediatr Neurol 13:186–197

    Article  PubMed  Google Scholar 

  • Xu Z, Chen S, Li X et al (2006) Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral schlerosis. Neurochem Res 31:1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126:317–326

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Grünblatt E, Mandel S (2007) The copper chelator, D-penicillamine does not attenuate MPTP induced dopamine depletion in mice. J Neural Transm 114:205–209

    Article  PubMed  CAS  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S et al (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xie W, Qu S et al (2005) Neuroprotection by iron chelator against proteasome inhibitor-induced nigral degeneration. Biochem Biophys Res Commun 333:544–549

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Xin N, Chi ZH et al (2009) Divalent metal transporter 1 is involved in amyloid precursor protein processing and Abeta generation. FASEB J 23:4207–4217

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Xie W, Pan T et al (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21:3835–3844

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Li X, Xie W et al (2010) Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration. Neurobiol Dis 37:307–313

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the joint participation by Diana Helis Henry Medical Research Foundation through its direct engagement in the continuous active conduct of medical research in conjunction with Baylor College of Medicine and this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Jankovic, J. & Le, W. Iron chelation and neuroprotection in neurodegenerative diseases. J Neural Transm 118, 473–477 (2011). https://doi.org/10.1007/s00702-010-0518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0518-0

Keywords

Navigation