Skip to main content

Detection and Localization of Markers of Oxidative Stress by In Situ Methods: Application in the Study of Alzheimer Disease

  • Protocol
  • First Online:
Free Radicals and Antioxidant Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 610))

Abstract

Oxidative stress is a key factor involved in the development and progression of Alzheimer disease (AD), and it is well documented that free radical oxidative damage, particularly of neuronal lipids, proteins, nucleic acids, and sugars, is extensive in brains of AD patients. The complex chemistry of peroxynitrite has been the subject of intense study and is now evident that there are two principal pathways for protein modification: the first one involves homolytic hydroxyl radical-like chemistry that results in protein-based carbonyls and the second involves electrophilic nitration of vulnerable side chains, in particular the electron-rich aromatic rings of Tyr and Trp. In the presence of buffering bicarbonate, peroxynitrite forms a CO2 adduct, which augments its reactivity. Formation of 3-nitrotyrosine by this route has become the classical protein marker specifically for the presence of peroxynitrite. Protein-based carbonyls can be detected by two methods: (i) derivatization with 2,4-dinitrophenylhydrazine (DNPH) and detection of the protein-bound hydrazones using an enzyme-linked anti-2,4-dinitrophenyl antibody and (ii) derivatization with biotin-hydrazide and detection of the protein-bound acyl hydrazone with enzyme-linked avidin or streptavidin. Glycation of proteins by reducing sugars (Maillard reaction) results in a profile of time-dependent adduct evolution rendering susceptibility to oxidative elaboration. In addition, oxidative stress can result in oxidized sugar derivatives which can subsequently modify protein through a process known as glycoxidation. Of more general importance, oxidative stress results in lipid peroxidation and the production of a range of electrophilic and mostly bifunctional aldehydes that modify numerous proteins. The more important protein modifications are referred to as advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs). Protein modification can result in both non-cross-link and cross-link AGEs and ALEs, the latter arising from the potential bifunctional reactivity, such as that of the lipid-derived modifiers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA). Oxidative damage to nucleic acids results in base modification, substitutions, and deletions. Among the most common modifications, 8-hydroxyguanosine (8OHG) is considered a signature of oxidative damage to nucleic acid.

Cells are not passive to increased oxygen radical production but rather upregulate protective responses. In neurodegenerative diseases, heme oxygenase-1 (HO-1) induction is coincident with the formation of neurofibrillary tangles. This enzyme that converts heme, a prooxidant, to biliverdin/bilirubin (antioxidants) and free iron has been considered an antioxidant enzyme. But seen in the context of arresting apoptosis, HO-1 and tau may play a role in maintaining the neurons free from the apoptotic signal (cytochrome c), since tau has strong iron-binding sites. Given the importance of iron as a catalyst for the generation of reactive oxygen species, changes in proteins associated with iron homeostasis can be used as an index of cellular responses. One such class of proteins is the iron regulatory proteins (IRPs) that respond to cellular iron concentrations by regulating the translation of proteins involved in iron uptake, storage, and utilization. Therefore, IRPs are considered to be the central control components of cellular iron concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell, B. (1989) Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radic. Biol. Med. 7, 645–651.

    Article  CAS  PubMed  Google Scholar 

  2. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C.S., Petersen, R.B., and Smith, M.A. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropath. Exp. Neurol. 60, 759–767.

    CAS  PubMed  Google Scholar 

  3. Nunomura, A., Perry, G., Pappolla, M.A., Friedland, R.P., Hirai, K., Chiba, S., and Smith, M.A. (2000) Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J. Neuropath. Exp. Neurol. 59, 1011–1017.

    CAS  PubMed  Google Scholar 

  4. Nunomura, A., Perry, G., Pappolla, M.A., Wade, R., Hirai, K., Chiba, S., and Smith, M.A. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci. 19, 1959–1964.

    CAS  PubMed  Google Scholar 

  5. Smith, M.A., Perry, G., Richey, P.L., Sayre, L.M., Anderson, V.E., Beal, M.F., and Kowall, N. (1996) Oxidative damage in Alzheimer’s. Nature 382, 120–121.

    Article  CAS  PubMed  Google Scholar 

  6. Smith, M.A., Richey Harris, P.L., Sayre, L.M., Beckman, J.S., and Perry, G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17, 2653–2657.

    CAS  PubMed  Google Scholar 

  7. Cras, P., Smith, M.A., Richey, P.L., Siedlak, S.L., Mulvihill, P., and Perry, G. (1995) Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathol. 89, 291–295.

    Article  CAS  PubMed  Google Scholar 

  8. Smith, M.A. (1998) Alzheimer disease. Int. Rev. Neurobiol. 42, 1–54.

    Article  CAS  PubMed  Google Scholar 

  9. Sayre, L.M., Zelasko, D.A., Harris, P.L., Perry, G., Salomon, R.G., and Smith, M.A. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J. Neurochem. 68, 2092–2097.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, X., Raina, A.K., Lee, H.G., Casadesus, G., Smith, M.A., and Perry, G. (2004) Oxidative stress signalling in Alzheimer’s disease. Brain Res. 1000, 32–39.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, M.A., Taneda, S., Richey, P.L., Miyata, S., Yan, S.D., Stern, D., Sayre, L.M., Monnier, V.M., and Perry, G. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Nat. Acad. Sci. USA 91, 5710–5714.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, M.A., Rudnicka-Nawrot, M., Richey, P.L., Praprotnik, D., Mulvihill, P., Miller, C.A., Sayre, L.M., and Perry, G. (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J. Neurochem. 64, 2660–2666.

    Article  CAS  PubMed  Google Scholar 

  13. Smith, M.A., Sayre, L.M., Anderson, V.E., Harris, P.L., Beal, M.F., Kowall, N., and Perry, G. (1998) Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem. 46, 731–735.

    CAS  PubMed  Google Scholar 

  14. Perls, M. (1867) Nachweis von Eisenoxyd in gewissen Pigmenten. Virchows Arch. [Pathol. Anat.] 39, 42–48.

    Google Scholar 

  15. Virchow, R. (1847) Die Pathologischen pigmente. Virch. Arch. [Pathol. Anat.] 1, 379–407.

    Article  Google Scholar 

  16. Smith, M.A., Harris, P.L., Sayre, L.M., and Perry, G. (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Nat. Acad. Sci. USA 94, 9866–9868.

    Article  CAS  PubMed  Google Scholar 

  17. Sayre, L.M., Perry, G., and Smith, M.A. (1999) In situ methods for detection and localization of markers of oxidative stress: application in neurodegenerative disorders. Methods Enzymol. 309, 133–152.

    Article  CAS  PubMed  Google Scholar 

  18. Sternberger, L.A. (Ed.) (1986) Immunocytochemistry, Wiley, NY.

    Google Scholar 

  19. Beckman, J.S. (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836–844.

    Article  CAS  PubMed  Google Scholar 

  20. Cuatrecasas, P., Fuchs, S., and Anfinsen, C.B. (1968) The tyrosyl residues at the active site of staphylococcal nuclease. Modifications by tetranitromethane. J. Biol. Chem. 243, 4787–4798.

    CAS  PubMed  Google Scholar 

  21. Yamada, H., Imoto, T., Fujita, K., Okazaki, K., and Motomura, M. (1981) Selective modification of aspartic acid-101 in lysozyme by carbodiimide reaction. Biochemistry 20, 4836–4842.

    Article  CAS  PubMed  Google Scholar 

  22. Miyata, S. and Monnier, V. (1992) Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J. Clin. Invest. 89, 1102–1112.

    Article  CAS  PubMed  Google Scholar 

  23. Sell, D.R. and Monnier, V.M. (1990) End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J. Clin. Invest. 85, 380–384.

    Article  CAS  PubMed  Google Scholar 

  24. Sayre, L.M., Sha, W., Xu, G., Kaur, K., Nadkarni, D., Subbanagounder, G., and Salomon, R.G. (1996) Immunochemical evidence supporting 2-pentylpyrrole formation on proteins exposed to 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 9, 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  25. Montine, K.S., Kim, P.J., Olson, S.J., Markesbery, W.R., and Montine, T.J. (1997) 4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J. Neuropathol. Exp. Neurol. 56, 866–871.

    Article  CAS  PubMed  Google Scholar 

  26. Yin, B., Whyatt, R.M., Perera, F.P., Randall, M.C., Cooper, T.B., and Santella, R.M. (1995) Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA. Free Radic. Biol. Med. 18, 1023–1032.

    Article  CAS  PubMed  Google Scholar 

  27. Posnett, D.N., McGrath, H., and Tam, J.P. (1988) A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain. J. Biol. Chem. 263, 1719–1725.

    CAS  PubMed  Google Scholar 

  28. Shibahara, S., Muller, R., Taguchi, H., and Yoshida, T. (1985) Cloning and expression of cDNA for rat heme oxygenase. Proc. Nat. Acad. Sci. USA 82, 7865–7869.

    Article  CAS  PubMed  Google Scholar 

  29. Kutty, R.K., Nagineni, C.N., Kutty, G., Hooks, J.J., Chader, G.J., and Wiggert, B. (1994) Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta. J. Cell. Physiol. 159, 371–378.

    Article  CAS  PubMed  Google Scholar 

  30. Rouault, T.A., Tang, C.K., Kaptain, S., Burgess, W.H., Haile, D.J., Samaniego, F., McBride, O.W., Harford, J.B., and Klausner, R.D. (1990) Cloning of the cDNA encoding an RNA regulatory protein–the human iron-responsive element-binding protein. Proc. Nat. Acad. Sci. USA 87, 7958–7962.

    Article  CAS  PubMed  Google Scholar 

  31. Pantopoulos, K., Gray, N.K., and Hentze, M.W. (1995) Differential regulation of two related RNA-binding proteins, iron regulatory protein (IRP) and IRPB. RNA 1, 155–163.

    CAS  PubMed  Google Scholar 

  32. Smith, M.A., Wehr, K., Harris, P.L., Siedlak, S.L., Connor, J.R., and Perry, G. (1998) Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res. 788, 232–236.

    Article  CAS  PubMed  Google Scholar 

  33. Yan, S.D., Chen, X., Schmidt, A.M., Brett, J., Godman, G., Zou, Y.S., Scott, C.W., Caputo, C., Frappier, T., and Smith, M.A. (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Nat. Acad. Sci. USA 91, 7787–7791.

    Article  CAS  PubMed  Google Scholar 

  34. Ledesma, M.D., Bonay, P., Colaco, C., and Avila, J. (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem. 269, 21614–21619.

    CAS  PubMed  Google Scholar 

  35. Perry, G. and Smith, M.A. (1993) Senile plaques and neurofibrillary tangles: what role do they play in Alzheimer disease. Clin. Neurosci. 1, 199–203.

    Google Scholar 

  36. Trojanowski, J.Q., Schmidt, M.L., Shin, R.-W., Bramblett, G.T., Goedert, M., and Lee, V.M.Y. (1993) PHF-tau (A68): from pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer’s disease. Clin. Neurosci. 1, 184–191.

    Google Scholar 

  37. Perry, G., Kawai, M., Tabaton, M., Onorato, M., Mulvihill, P., Richey, P., Morandi, A., Connolly, J.A., and Gambetti, P. (1991) Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton. J. Neurosci. 11, 1748–1755.

    CAS  PubMed  Google Scholar 

  38. Smith, M.A., Kutty, R.K., Richey, P.L., Yan, S.D., Stern, D., Chader, G.J., Wiggert, B., Petersen, R.B., and Perry, G. (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am. J. Pathol. 145, 42–47.

    CAS  PubMed  Google Scholar 

  39. Ghanbari, H.A., Ghanbari, K., Harris, P.L., Jones, P.K., Kubat, Z., Castellani, R.J., Wolozin, B.L., Smith, M.A., and Perry, G. (2004) Oxidative damage in cultured human olfactory neurons from Alzheimer’s disease patients. Aging Cell 3, 41–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories is supported by the National Institutes of Health, the Alzheimer’s Association, and Philip Morris USA and Philip Morris International.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moreira, P.I., Sayre, L.M., Zhu, X., Nunomura, A., Smith, M.A., Perry, G. (2010). Detection and Localization of Markers of Oxidative Stress by In Situ Methods: Application in the Study of Alzheimer Disease. In: Uppu, R., Murthy, S., Pryor, W., Parinandi, N. (eds) Free Radicals and Antioxidant Protocols. Methods in Molecular Biology, vol 610. Humana Press. https://doi.org/10.1007/978-1-60327-029-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-029-8_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-710-5

  • Online ISBN: 978-1-60327-029-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics