Skip to main content
Log in

Neuroprotective Effects of (-)-Epigallocatechin-3-gallate in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of Amyotrophic lateral sclerosis (ALS). SOD1-G93A transgenic mice and wild-type mice were randomly divided into EGCG-treated groups (10 mg/kg, p.o) and vehicle-treated control groups. Rotarod measurement was performed to assess the motor function of mice starting at the age of 70 days. Nissl staining to examine the number of motor neurons and CD11b immunohistochemical staining to evaluate activation of microglia in the lumbar spinal cords were conducted at the age of 120 days. In addition, for further observation of regulation of cell signaling pathways by EGCG, we used immunohistochemical analysis for nuclear factor kappa B (NF-κB) and cleaved caspase-3 as well as western blot analysis to determine the expression of nitric oxide synthase (iNOS) and NF-κB in the spinal cord. This study demonstrated that oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-κB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-κB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Cleveland DW (1999) From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron 24:515–520

    Article  PubMed  CAS  Google Scholar 

  2. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  PubMed  CAS  Google Scholar 

  3. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    Article  PubMed  CAS  Google Scholar 

  4. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  PubMed  CAS  Google Scholar 

  5. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 92:689–693

    Article  PubMed  CAS  Google Scholar 

  6. Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci USA 93:3155–3160

    Article  PubMed  CAS  Google Scholar 

  7. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819

    Article  PubMed  CAS  Google Scholar 

  8. Mandel S, Weinreb O, Amit T, Youdim MB (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569

    Article  PubMed  CAS  Google Scholar 

  9. Li R, Huang YG, Fang D, Le WD (2004) (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 78:723–731

    Article  PubMed  CAS  Google Scholar 

  10. Li M, Ona VO, Guegan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288:335–339

    Article  PubMed  CAS  Google Scholar 

  11. Manabe Y, Nagano I, Gazi MS, Murakami T, Shiote M, Shoji M, Kitagawa H, Abe K (2003) Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Neurol Res 25:195–200

    Article  PubMed  CAS  Google Scholar 

  12. Warita H, Itoyama Y, Abe K (1999) Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res 819:120–131

    Article  PubMed  CAS  Google Scholar 

  13. Schutz B, Reimann J, Dumitrescu-Ozimek L, Kappes-Horn K, Landreth GE, Schurmann B, Zimmer A, Heneka MT (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci 25:7805–7812

    Article  PubMed  CAS  Google Scholar 

  14. Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S (2002) A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23:719–735

    Article  PubMed  CAS  Google Scholar 

  15. Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ, Kim HT, Kim J, Kim MH, Hwang MS, Song C, Yang KW, Lee KW, Kim SH, Kim OH (2006) The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 395:103–107

    Article  PubMed  CAS  Google Scholar 

  16. Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14:46–60

    Article  PubMed  CAS  Google Scholar 

  17. McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470

    Article  PubMed  CAS  Google Scholar 

  18. Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, Gautris PP, Guerin J, Bloch B, Agid Y, Hirsch EC (1996) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Transm 103:1043–1052

    Article  PubMed  CAS  Google Scholar 

  19. Levites Y, Amit T, Youdim MB, Mandel S (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277:30574–30580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (No. 30370491), a research grant (E03003) from High Education Commission of Shanghai Municipality and Research Fund (03DZ14021) from Science and Technology Commission of Shanghai Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Chen, S., Li, X. et al. Neuroprotective Effects of (-)-Epigallocatechin-3-gallate in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Neurochem Res 31, 1263–1269 (2006). https://doi.org/10.1007/s11064-006-9166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9166-z

Keywords

Navigation