Skip to main content

Advertisement

Log in

Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer’s disease neuropathology

  • Alzheimer's Disease and Related Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The uridine nucleotide-activated P2Y2, P2Y4 and P2Y6 receptors are widely expressed in the brain and are involved in many CNS processes, including those which malfunction in Alzheimer’s disease (AD). However, the status of these receptors in the AD neocortex, as well as their putative roles in the pathogenesis of neuritic plaques and neurofibrillary tangles, remain unclear. In this study, we used immunoblotting to measure P2Y2, P2Y4 and P2Y6 receptors in two regions of the postmortem neocortex of neuropathologically assessed AD patients and aged controls. P2Y2 immunoreactivity was found to be selectively reduced in the AD parietal cortex, while P2Y4 and P2Y6 levels were unchanged. In contrast, all three receptors were preserved in the occipital cortex, which is known to be minimally affected by AD neuropathology. Furthermore, reductions in parietal P2Y2 immunoreactivity correlated both with neuropathologic scores and markers of synapse loss. These results provide a basis for considering P2Y2 receptor changes as a neurochemical substrate of AD, and point towards uridine nucleotide-activated P2Y receptors as novel targets for disease-modifying AD pharmacotherapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  • Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci USA 102:19138–19143

    Article  PubMed  CAS  Google Scholar 

  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    Article  PubMed  CAS  Google Scholar 

  • Behl C (2000) Apoptosis and Alzheimer’s disease. J Neural Transm 107:1325–1344

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Butler D, Bendiske J, Michaelis ML, Karanian DA, Bahr BA (2007) Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 562:20–27

    Article  PubMed  CAS  Google Scholar 

  • Calvert JA, Atterbury-Thomas AE, Leon C, Forsythe ID, Gachet C, Evans RJ (2004) Evidence for P2Y1, P2Y2, P2Y6 and atypical UTP-sensitive receptors coupled to rises in intracellular calcium in mouse cultured superior cervical ganglion neurons and glia. Br J Pharmacol 143:525–532

    Article  PubMed  CAS  Google Scholar 

  • Camden JM, Schrader AM, Camden RE, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J Biol Chem 280:18696–18702

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere F, Amadio S, Angelini DF, Sancesario G, Bernardi G, Volonte C (2004) Role of the metabotropic P2Y4 receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor. Exp Cell Res 300:149–158

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere F, Nestola V, Amadio S, D’Ambrosi N, Angelini DF, Sancesario G, Bernardi G, Volonte C (2005) The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells. Neurobiol Dis 18:100–109

    Article  PubMed  CAS  Google Scholar 

  • Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452:165–174

    Article  PubMed  CAS  Google Scholar 

  • Counts SE, Mufson EJ (2005) The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J Neuropathol Exp Neurol 64:263–272

    PubMed  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA (1986) The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging 7:3–7

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL, Back C (1998) The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am J Geriatr Psychiatry 6:S64–S78

    PubMed  CAS  Google Scholar 

  • Flynn DD, Weinstein DA, Mash DC (1991) Loss of high-affinity agonist binding to M1 muscarinic receptors in Alzheimer’s disease: implications for the failure of cholinergic replacement therapies. Ann Neurol 29:256–262

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychiatry 18:S15–S21

    Article  PubMed  Google Scholar 

  • Francis PT, Sims NR, Procter AW, Bowen DM (1993) Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J Neurochem 60:1589–1604

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    PubMed  CAS  Google Scholar 

  • Gonzalez FA, Weisman GA, Erb L, Seye CI, Sun GY, Velazquez B, Hernandez-Perez M, Chorna NE (2005) Mechanisms for inhibition of P2 receptors signaling in neural cells. Mol Neurobiol 31:65–79

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Wester P, Winblad B, Gezelius C, Bring G, Eriksson A (1985) The patients dying after long terminal phase have acidotic brains; implications for biochemical measurements on autopsy tissue. J Neural Transm 61:253–264

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindahl E (2000) Modulation of β-amyloid precursor protein processing and τ phosphorylation by acetylcholine receptors. Eur J Pharmacol 393:255–263

    Article  PubMed  CAS  Google Scholar 

  • Hope T, Keene J, Fairburn C, McShane R, Jacoby R (1997a) Behaviour changes in dementia. 2: Are there behavioural syndromes? Int J Geriatr Psychiatry 12:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Hope T, Keene J, Gedling K, Cooper S, Fairburn C, Jacoby R (1997b) Behaviour changes in dementia. 1: Point of entry data of a prospective study. Int J Geriatr Psychiatry 12:1062–1073

    Article  PubMed  CAS  Google Scholar 

  • Hope T, Keene J, Fairburn CG, Jacoby R, McShane R (1999) Natural history of behavioural changes and psychiatric symptoms in Alzheimer’s disease. A longitudinal study. Br J Psychiatry 174:39–44

    Article  PubMed  CAS  Google Scholar 

  • Hussl S, Boehm S (2006) Functions of neuronal P2Y receptors. Pflugers Arch 452:538–551

    Article  PubMed  CAS  Google Scholar 

  • Jacobs EH, Williams RJ, Francis PT (2006) Cyclin-dependent kinase 5, Munc18a and Munc18-interacting protein 1/X11α protein up-regulation in Alzheimer’s disease. Neuroscience 138:511–522

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Soltysiak KA, Gao ZG, Chang TS, Chung E, Jacobson KA (2003) Tumor necrosis factor α-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 65:923–931

    Article  PubMed  CAS  Google Scholar 

  • Kirvell SL, Esiri M, Francis PT (2006) Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. J Neurochem 98:939–950

    Article  PubMed  CAS  Google Scholar 

  • Lai MK, Lai OF, Keene J, Esiri MM, Francis PT, Hope T, Chen CP (2001) Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 57:805–811

    PubMed  CAS  Google Scholar 

  • Lai MK, Tsang SW, Alder JT, Keene J, Hope T, Esiri MM, Francis PT, Chen CP (2005) Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer’s disease. Psychopharmacology (Berl) 179:673–677

    Article  CAS  Google Scholar 

  • Lanari A, Amenta F, Silvestrelli G, Tomassoni D, Parnetti L (2006) Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease. Mech Ageing Dev 127:158–165

    Article  PubMed  CAS  Google Scholar 

  • Lanctot KL, Herrmann N, Mazzotta P (2001) Role of serotonin in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci 13:5–21

    PubMed  CAS  Google Scholar 

  • Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007) Astrocytic control of synaptic NMDA receptors. J Physiol 581:1057–1081

    Article  PubMed  CAS  Google Scholar 

  • Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001

    Article  PubMed  Google Scholar 

  • Mann DM (1996) Pyramidal nerve cell loss in Alzheimer’s disease. Neurodegeneration 5:423–427

    Article  PubMed  CAS  Google Scholar 

  • McLarnon JG, Choi HB, Lue LF, Walker DG, Kim SU (2005) Perturbations in calcium-mediated signal transduction in microglia from Alzheimer’s disease patients. J Neurosci Res 81:426–435

    Article  PubMed  CAS  Google Scholar 

  • Meneses A, Hong E (1997) Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning. Behav Brain Res 87:105–110

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  • Moore D, Iritani S, Chambers J, Emson P (2000) Immunohistochemical localization of the P2Y1 purinergic receptor in Alzheimer’s disease. Neuroreport 11:3799–3803

    Article  PubMed  CAS  Google Scholar 

  • Nicholas RA, Watt WC, Lazarowski ER, Li Q, Harden K (1996) Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: identification of a UDP-selective, a UTP-selective, and an ATP- and UTP-specific receptor. Mol Pharmacol 50:224–229

    PubMed  CAS  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307

    Article  PubMed  CAS  Google Scholar 

  • Nitsch RM, Deng M, Growdon JH, Wurtman RJ (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem 271:4188–4194

    Article  PubMed  CAS  Google Scholar 

  • Pearson RC, Powell TP (1989) The neuroanatomy of Alzheimer’s disease. Rev Neurosci 2:101–121

    Google Scholar 

  • Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A (1996) Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem 66:877–880

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  • Tsang SW, Lai MK, Kirvell S, Francis PT, Esiri MM, Hope T, Chen CP, Wong PT (2006) Impaired coupling of muscarinic M(1) receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer’s disease. Neurobiol Aging 27:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Tsang SW, Pomakian J, Marshall GA, Vinters HV, Cummings JL, Chen CP, Wong PT, Lai MK (2007) Disrupted muscarinic M1 receptor signaling correlates with loss of protein kinase C activity and glutamatergic deficit in Alzheimer’s disease. Neurobiol Aging 28:1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Tung EK, Choi RC, Siow NL, Jiang JX, Ling KK, Simon J, Bernard EA, Tsim KW (2004) P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions. Mol Pharmacol 66:794–806

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Wirkner K, Gunther A, Weber M, Guzman SJ, Krause T, Fuchs J, Koles L, Norenberg W, Illes P (2007) Modulation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex by P2Y receptor activation. Cereb Cortex 17:621–631

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Wellcome Trust, UK. We thank Dr. Brendan McDonald for the collection and classification of the postmortem samples. S. Kirvell is the Edmond J. Safra Fellow at Wolfson CARD, King’s College London. In Singapore, the work was supported by the National Medical Research Council (NMRC/0932/2005) to M. K. P. Lai and a Faculty Start-up grant to C. P. Chen. M. K. P. Lai would like to thank Olivia H. J. Oon for valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell K. P. Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, M.K.P., Tan, M.G.K., Kirvell, S. et al. Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer’s disease neuropathology. J Neural Transm 115, 1165–1172 (2008). https://doi.org/10.1007/s00702-008-0067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0067-y

Keywords

Navigation