Skip to main content

Advertisement

Log in

Tetrahydrofurobenzofuran cymserine, a potent butyrylcholinesterase inhibitor and experimental Alzheimer drug candidate, enzyme kinetic analysis

  • Alzheimer's Disease and Related Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Synaptic loss, particularly related to the forebrain cholinergic system, is considered to be an early event that leads to Alzheimer’s disease (AD) and has led to the development of acetylcholinesterase inhibitors (AChE-Is) as the mainstay of treatment for several degenerative disorders that culminate in dementia. The primary dose-limiting toxicities of all clinically available AChE-Is are, similar to useful actions on cognition, cholinergically mediated and they ultimately limit the value of this drug class in achieving anything but symptomatic improvements. In addition, AChE levels in brain areas associated with AD decline with disease progression, which likely ultimately limits the therapeutic utility of this drug class. New research indicates that selective inhibition of butyrylcholinesterase (BuChE), a closely related enzyme that is markedly elevated in AD brain, increases acetylcholine (ACh) and augments cognition in rodents free of the characteristic undesirable actions of AChE-Is. BuChE inhibition hence represents an innovative treatment approach for AD, and agents are currently being synthesized to optimally achieve this. The novel compound, tetrahydrofurobenzofuran cymserine (THFBFC), is derived from our effort to produce a potent and BuChE-selective inhibitor as a candidate to test the hypothesis that BuChE-Is would be efficacious and better tolerated than AChE-Is in AD. Herein, we applied innovative enzyme kinetic analyses to characterize the quantitative interaction of THFBFC with human BuChE. These provided values for the agent’s IC50, together with specific new kinetic constants, such as K T50, K T1/2, R I, o K RT, o P max, K PT and PT1/2, to aid define target concentrations for clinical translation. Additional classical kinetic parameters, including K i, K m or K s, k cat or V max and V mi were also determined. THFBFC proved to be a potent competitive inhibitor of human BuChE and, like its isomer dihydrobenzodioxepine cymserine, is a potentially interesting AD drug candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AChE-Is:

Acetylcholinesterase inhibitors

AD:

Alzheimer’s disease

APP:

Amyloid-β precursor protein

Aβ:

Amyloid-β peptide

BuChE:

Butyrylcholinesterase

BuSCh:

Butyrylthiocholine iodide

BuChE-Is:

Butyrylcholinesterase inhibitors

ChEs:

Cholinesterases

ChE-Is:

Cholinesterase inhibitors

CNS:

Central nervous system

FAD:

Familial Alzheimer’s disease

THFBFC:

Tetrahydrofurobenzofuran cymserine

K PT :

Preincubation time constant

K T50 :

Concentration of inhibitor doubles K T1/2

o K RT :

Overall rate of inhibition constant

P PC :

Concentration of inhibitor doubles pseudo P max

o P max :

Overall maximum product concentration

K T1/2 :

Time required for half V max;

PT1/2 :

Preincubation time required for half ν;

R I :

Rate of IC50

RβA:

Reflective binding activity

K i :

Inhibition constant

K s :

Substrate constant

K m :

Michaelis-Menten constant

k cat :

Catalytic constant

V max :

Apparent maximal activity

V mi :

V maxi

References

  • Arendt T, Bigl V, Walther F, Sonntag M (1984) Decreased ratio of CSF acetylcholinesterase to butyrylcholinesterase activity in Alzheimer’s disease. Lancet 1:173

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bruckner MK, Lange M, Bigl V (1992) Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development—a study of molecular forms. Neurochem Int 21:381–396

    Article  PubMed  CAS  Google Scholar 

  • Ballard CG, Greig NH, Guillozet-Bongaarts AL, Enz A, Darvesh S (2005) Cholinesterases: roles in the brain during health and disease. Curr Alzheimer Res 2:307–318

    Article  PubMed  CAS  Google Scholar 

  • Bartels CF, Jensen FS, Lockridge O (1992) DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am J Hum Genet 50:1086–1103

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cerbai F, Giovannini MG, Melani C, Enz A, Pepeu G (2007) N1phenethyl-norcymserine, a selective butyrylcholinesterase inhibitor, increases acetylcholine release in rat cerebral cortex: a comparison with donepezil and rivastigmine. Eur J Pharmacol 572:142–150

    Article  PubMed  CAS  Google Scholar 

  • Courtney C (2004) AD2000 collaborative group. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 363(9427):2105–2115

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  PubMed  CAS  Google Scholar 

  • Darvesh S, Hopkins DA (2003) Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol 463:25–43

    Article  PubMed  CAS  Google Scholar 

  • Darvesh S, Grantham DL, Hopkins DA (1998) Butyrylcholinesterase in normal human amygdala and hippocampal formation. J Comp Neurol 393:374–390

    Article  PubMed  CAS  Google Scholar 

  • Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4:131–138

    Article  PubMed  CAS  Google Scholar 

  • Déniz-Naranjo MC, Muñoz-Fernández C, Alemany-Rodríguez MJ, Pérez-Vieitez Mdel C, Aladro-Benito Y, Irurita-Latasa J, Sánchez-García F (2007) Butyrylcholinesterase, ApoE and Alzheimer’s disease in a population from the Canary Islands (Spain). Neurosci Lett 427:34–38

    Article  PubMed  Google Scholar 

  • Doraiswamy PM, Xiong GL (2006) Pharmacological strategies for the prevention of Alzheimer’s disease. Expert Opin Pharmacother 7:1–10

    Article  PubMed  CAS  Google Scholar 

  • Duysen EG, Li B, Darvesh S, Lockridge O (2007) Sensitivity of butyrylcholinesterase knockout mice to (−)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer’s disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicology 233:60–69

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Farlow MR, Cummings JL (2007) Effective pharmacologic management of Alzheimer’s disease. Am J Med 120:388–97

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E (2003) Butyrlcholinesterase: its function and inhibitors. Martin Dunitz, London and New York

  • Greig NH, Pei X-F, Soncrant T, Ingram DK, Brossi A (1995) Phenserine and ring-C hetero-analogues: drug candidates for the treatment of Alzheimer’s disease. Med Chem Rev 15:3–31

    CAS  Google Scholar 

  • Greig NH, Lahiri DK, Sambamurti K (2002) Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 14:77–91

    Article  PubMed  Google Scholar 

  • Greig NH, Ruckle J, Comer P, Brownell L, Holloway HK, Flanagan DR Jr, Canfield CJ, Burford RG (2005a) Anticholinesterase and pharmacokinetic profile of phenserine in healthy elderly human subjects. Curr Alzheimer Res 2:483–492

    Article  PubMed  CAS  Google Scholar 

  • Greig NH, Sambamurti K, Yu Q-S, Brossi A, Bruinsma G, Lahiri DK (2005b) An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr Alzheimer Res 2:281–291

    Article  PubMed  CAS  Google Scholar 

  • Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K Sambamurti K, Brossi A, Lahiri DK (2005c) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA 102:17213–17218

    Article  PubMed  CAS  Google Scholar 

  • Guillozet AL, Smiley JF, Mash DC, Mesulam M (1997) Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol 42:909–18

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (2006) Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 3:71–73

    Article  PubMed  CAS  Google Scholar 

  • Hartmann J, Kiewert C, Duysen EG, Lockridge O, Greig NH, Klein J (2007) Excessive levels of hippocampal acetylcholine in acetylcholinesterase-knockout mice are moderated by butyrylcholinesterase activity. J Neurochem 100:1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Ballard CG, Lehmann D, David Smith A, Beaumont H, Day IN, Nadeem Khan M, Lovestone S, McCulley M, Morris CM, Munzo DG, Russ C, Del Ser T, Warden D (2005) Rate of progression of cognitive decline in Alzheimer’s disease: effect of butyrylcholinesterase K gene variation. J Neurol Neurosurg Psychiatry 76:640–643

    Article  PubMed  CAS  Google Scholar 

  • Kamal MA, Al-Jafari AA, Yu Q-S, Greig NH (2006a) Kinetic analysis of the inhibition of human butyrylcholinesterase with cymserine. Biochim Biophys Acta 1760:200–206

    PubMed  CAS  Google Scholar 

  • Kamal MA, Yu Q-S, Holloway HW, Tweedie D, Klein P, Greig NH (2006b) Kinetics of human serum butyrylcholinesterase and its inhibition by a novel experimental Alzheimer therapeutic, bisnorcymserine. J Alzheimers Dis 10:43–51

    PubMed  CAS  Google Scholar 

  • Kamal MA, Klein P, Yu Q-S, Holloway HW, Tweedie D, Greig NH (2007) Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine. Neurochem Res. doi:10.1007/s11064-007-9490-y

    PubMed  Google Scholar 

  • Lacor PN (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  • Lahiri DK, Rogers JT, Greig NH, Sambamurti K (2004) Rationale for the development of cholinesterase inhibitors as anti-Alzheimer agents. Curr Pharm Des 10:3111–3119

    Article  PubMed  CAS  Google Scholar 

  • Lahiri DK, Chen D, Maloney B, Holloway HW, Yu QS, Utsuki T, Giordano T, Sambamurti K, Greig NH (2007) The experimental Alzheimer’s disease drug posiphen [(+)-phenserine] lowers amyloid-beta peptide levels in cell culture and mice. J Pharmacol Exp Ther 320:386–396

    Article  PubMed  CAS  Google Scholar 

  • Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  • Lopez OL (2005) Alteration of a clinically meaningful outcome in the natural history of Alzheimer’s disease by cholinesterase inhibition. J Am Geriatr Soc 53:83–87

    Article  PubMed  Google Scholar 

  • Luo W, Yu QS, Holloway HW, Greig NH, Brossi A (2005a) Syntheses of tetrahydrofurobenzofurans and dihydro-methanobenzodioxepines from 5-hydroxy-3-methyl-3H-benzofuran-2-one. Re-arrangement and ring expansion under reductive conditions on treatment with hydrides. J Org Chem 70:6171–6176

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Yu QS, Zhan M, Parrish D, Deschamps JR, Kulkarni SS, Holloway HW, Alley GM, Lahiri DK, Brossi A, Greig NH (2005b) Novel anticholinesterases based on the molecular skeletons of furobenzofuran and benzodioxepine. J Med Chem 48:986–994

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Yu QS, Kulkarni SS, Holloway HW, Parrish D, Tweedie D, Lahiri DK, Brossi A, Greig NH (2006) (−) And (+)-o-carbamoyl phenols of pyrroloindole, furoindole, furobenzofuran and benzodioxepine: enantiomeric syntheses and structure/activity relationship for human acetyl- and butyrylcholinesterase inhibitory action. J Med Chem 49:2174–2185

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  • O’Brien KK, Saxby BK, Ballard CG, Grace J, Harrington F, Ford GA, O’Brien GT, Swan AG, Fairbairn AF, Wesnes W, Del Ser T, Edwardson JA, Morris CM, McKeith IG (2003) Regulation of attention and response to therapy in dementia by butyrylcholinesterase. Pharmacogenetics 13:231–239

    Article  PubMed  Google Scholar 

  • Perry EK (1986) The cholinergic hypothesis—ten years on. Br Med Bull 42:63–69

    PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1978) Changes in brain cholinesterase in senile dementia of Alzheimer’s type. Neuropathol Appl Neurobiol 4:273–277

    Article  PubMed  CAS  Google Scholar 

  • Rice SG, Nowak L, Duysen EG, Lockridge O, Lahiri DK, Reyes PF (2007) Neuropathological and immunochemical studies of brain parenchyma in acetylcholinesterase knockout mice: implications in Alzheimer’s disease. J Alzheimers Dis 11:481–489

    PubMed  CAS  Google Scholar 

  • Sambamurti K, Greig NH, Lahiri DK (2002) Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer’s disease. Neuromolecular Med 1:1–31

    Article  PubMed  CAS  Google Scholar 

  • Sambamurti K, Anitha S, Venugopal C, Prakasam A, Zhou Y, Lahiri DK, Greig NH (2006) A partial failure of membrane protein turnover may cause Alzheimer’s disease: a new hypothesis. Curr Alzheimer Res 3:81–90

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2005) Defining molecular targets to prevent Alzheimer disease. Arch Neurol 62:192–195

    Article  PubMed  Google Scholar 

  • Silver A (1974) The biology of cholinesterases. Elsevier, Amsterdam

    Google Scholar 

  • Sisodia SS, St George-Hyslop PH (2002) gGamma-secretase, notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–290

    Article  PubMed  CAS  Google Scholar 

  • Small DH (2005) Acetylcholinesterase inhibitors for the treatment of dementia in Alzheimer’s disease: do we need new inhibitors? Expert Opin Emerg Drugs 10:817–825

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Zakut H (1993) Human cholinesterases and anticholinesterases. Academic, New York

    Google Scholar 

  • Souza RL, Mikami LR, Maegawa RO, Chautard-Freire-Maia EI (2005) Four new mutations in the BCHE gene of human butyrylcholinesterase in a Brazilian blood donor sample. Mol Genet Metab 84:349–353

    Article  PubMed  CAS  Google Scholar 

  • Standridge JB (2004) Pharmacotherapeutic approaches to the treatment of Alzheimer’s disease. Clin Ther 26:615–630

    Article  PubMed  CAS  Google Scholar 

  • Yu QS, Holloway HW, Utsuki T, Brossi A, Greig NH (1999) Phenserine-based synthesis of novel selective inhibitors of butyrylcholinesterase for Alzheimer’s disease. J Med Chem 42:1855–1861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad A. Kamal or Nigel H. Greig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamal, M.A., Qu, X., Yu, Qs. et al. Tetrahydrofurobenzofuran cymserine, a potent butyrylcholinesterase inhibitor and experimental Alzheimer drug candidate, enzyme kinetic analysis. J Neural Transm 115, 889–898 (2008). https://doi.org/10.1007/s00702-008-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0022-y

Keywords

Navigation