Skip to main content

Advertisement

Log in

Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid

  • Experimental research - Pediatrics
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) enables more complete resections of tumors in adults. 5-ALA elicits accumulation of fluorescent porphyrins in various cancerous tissues, which can be visualized using a modified neurosurgical microscope with blue light. Although this technique is well established in adults, it has not been investigated systematically in pediatric brain tumors. Specifically, it is unknown how quickly, how long, and to what extent various pediatric tumors accumulate fluorescence. The purpose of this study was to determine utility and time course of 5-ALA–induced fluorescence in typical pediatric brain tumors in vitro.

Methods

Cell cultures of medulloblastoma [DAOY and UW228], cPNET [PFSK] atypical teratoid rhabdoid tumor [BT16] and ependymoma [RES196] were incubated with 5-ALA for either 60 minutes or continuously. Porphyrin fluorescence intensities were determined using a fluorescence-activated cell sorter (FACS) after 1, 3, 6, 9, 12 and 24 hours. C6 and U87 cells served as controls.

Results

All pediatric brain tumor cell lines displayed fluorescence compared to their respective controls without 5-ALA (p < 0.05). Sixty minutes of incubation resulted in peaks between 3 and 6 hours, whereas continuous incubation resulted in peaks at 12 hours or beyond. 60 minute incubation peak levels were between 52 and 91 % of maxima achieved with continuous incubation. Accumulation and clearance varied between cell types.

Conclusions

We demonstrate that 5-ALA exposure of cell lines derived from typical pediatric central nervous system (CNS) tumors induces accumulation of fluorescent porphyrins. Differences in uptake and clearance indicate that different application modes may be necessary for fluorescence-guided resection, depending on tumor type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Robertson PL (2006) Advances in Treatment of pediatric brain tumors. NeuroRx 3:276–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Duffner PK, Cohen ME, Myers MH, Heise HW (1986) Survival of children with brain tumors: SEER Program, 1973–1980. Neurology 36:597–601

    Article  CAS  PubMed  Google Scholar 

  3. Regula J, MacRobert AJ, Gorchein A, Bounaccorsi GA, Thrope SM, Spencer GM, Hatfield AR, Bown SG (1995) Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX–a pilot study. Gut 36:67–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45:160–169

    Article  CAS  PubMed  Google Scholar 

  5. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525

    Article  CAS  PubMed  Google Scholar 

  6. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    Article  CAS  PubMed  Google Scholar 

  7. Díez Valle R, Slof J, Galván J, Arza C, Romariz C, Vidal C (2013) representación de los investigadores del estudio VISIONA, Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA Study). Neurologia. doi:10.1016/j.nrl.2013.05.004

    PubMed  Google Scholar 

  8. Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, Krischek B, Danz S, Bornemann A, Liebsch M, Tatagiba MS (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113:352–357

    Article  PubMed  Google Scholar 

  9. Pichlmeier U, Bink A, Schackert G, Stummer W, ALA Glioma Study Group (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive analysis of ALA study patients. Neuro Oncol 10:1025–1034

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sanai N (2012) Emerging operative strategies in neurosurgical oncology. Curr Opin Neurol 25:756–766

    Article  PubMed  Google Scholar 

  11. Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M, Seidel K, Stieglitz L, Raabe A (2012) Gross total resection in contemporary surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71:927–935

    Article  PubMed  Google Scholar 

  12. Stummer W, Pilchmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) ALA-Glioma Study Group. Flourescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  13. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T, ALA-Glioma study Group (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576

    Article  PubMed  Google Scholar 

  14. Tonn JC, Stummer W (2008) Flourescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks and pitfalls. Clin Neurosurg 55:20–26

    PubMed  Google Scholar 

  15. Eicker S, Sarikaya-Seiwert S, Borkhardt A, Gierga K, Turowski B, Heiroth HJ, Steiger HJ, Stummer W (2011) ALA-induced Porphyrin Accumulation in Medulloblastoma and its use for Fluorescence-Giuded Surgery. Cen Eur Neurosurg 72:101–103

    Article  CAS  Google Scholar 

  16. Ruge JR, Liu J (2009) Use of 5-aminolevulinic acid for visualization and resection of benign pediatric brain tumor. J Neurosurg Pediatr 4:484–486

    Article  PubMed  Google Scholar 

  17. Beez T, Sarikaya-Seiwert S, Steiger HJ, Hänggi D (2014) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of brain tumors in children—a technical note. Acta Neurochir 156:597–604

    Article  PubMed  Google Scholar 

  18. Preuß M, Renner C, Krupp W, Christiansen H, Fischer L, Merkenschlager A, Kieß W, Müller W, Manzo N, Meixenberger J, Nestler U (2013) The use of 5-aminolevulinic acid flourescence guidance in resection of pediatric brain tumors. Childs Nerv Syst 29:1263–1267

    Article  PubMed  Google Scholar 

  19. Keles GE, Berger MS, Srinivasan J, Kolstoe DD, Bobola MS, Silber JR (1995) Establishment and characterization of four human medulloblastoma-derived cell lines. Oncol Res 7:493–503

    CAS  PubMed  Google Scholar 

  20. Ota S, Crabbe DC, Tran TN, Triche TJ, Shimada H (1993) Malignant rhabdoid tumor. A study with two established cell lines. Cancer 71:2862–2872

    Article  CAS  PubMed  Google Scholar 

  21. Bobola MS, Silber JR, Ellenbogen RG, Geyer JR, Blank A, Goff RD (2005) O6-mathylguanine-DNA methyltransferase, O6-benzylguanine, and resistance to clinical alkylators in pediatric primary brain tumor cell lines. Clin Cancer Res 7:2747–2755

  22. Van Vuurden DG, Hullemann E, Meijer OLM, Wedekind LE, Kool M, Witt H, Vandertop PW, Würdinger T, Noske DP, Kaspers GJ, Cloos J (2011) PARP inhibition sensitizes high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2:984–996

    PubMed Central  PubMed  Google Scholar 

  23. Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pilchmeier U (2014) 5-Aminolevulininc acid-derived tumor flourecsence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and prospective imaging. Neurosurgery 74:310–320

    Article  PubMed  Google Scholar 

  24. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould CB, LoRusso PM, Von Hoff DD, de Sauvage FJ, Low JA (2009) Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 261:1173–1178

    Article  Google Scholar 

  25. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Williams Parson D, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 213:465–472

    Article  Google Scholar 

  26. Döring F, Walter J, Will J, Föcking M, Boll M, Amasheh S, Clauss W, Daniel H (1998) Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implication. J Clin Invest 101:2761–2767

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rodrigues L, Batlle A, Di Venosa G, Battah S, Dobbin P, Macrobert AJ, Casas A (2006) Machnisms of 5-aminolevulinic acid ester uptake in mammalian cells. Br J Pharmacol 147:825–833

    Article  Google Scholar 

  28. Rud E, Gederaas O, Høgset A, Berg K (2000) 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters. Photochem Photobiol 71:640–647

    Article  CAS  PubMed  Google Scholar 

  29. Kabe Y, Ohmori M, Shinouchi K, Tsuboi Y, Hirao S, Azuma M, Watanabe H, Okura I, Handa H (2006) Porphyrin accumulation in mitochondria is mediated by 2-oxoglutarate carrier. J Biol Chem 281:31729–31735

    Article  CAS  PubMed  Google Scholar 

  30. Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114:345–358

    Article  CAS  PubMed  Google Scholar 

  31. Ogino T, Kobuchi H, Munetomo K, Fujita H, Yamamoto M, Utsumi T, Inoue K, Shuin T, Sasaki J, Inoue M, Utsumi K (2011) Serum-dependent export of protoporphyrin IX by ATP-binding cassette transporter G2 in T24 cells. Mol Cell Biochem 358:297–307

    Article  CAS  PubMed  Google Scholar 

  32. Rebeiz N, Arkins S, Kelly KW, Rebeiz CA (1996) Enhancement of coproporphyrinogen III transport into isolated transformed leukocytes mitochondria by ATP. Arch Biochem Biophys 333:475–481

    Article  CAS  PubMed  Google Scholar 

  33. Hinnen P, de Rooij FW, Terlouw EM, Edixhoven A, van Dekken H, van Hillegersberg R, Tilanus HW, Wilson JH, Siersema PD (2000) Porphyrin biosynthesis in human Barret’s oesophagus and adenocarcinoma after ingestion of 5-aminolevulinic acid. Br J Cancer 83:539–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hirai K, Sasahira T, Ohmori H, Fuji K, Kuniyasu H (2007) Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice. Int J Cancer 120:500–505

    Article  CAS  PubMed  Google Scholar 

  35. Fadrigan A, Daily HA (1987) Inhibition of ferrocholatase during differentiation of murine erythroleukaemia cells. Biochem J 243:419–424

    Google Scholar 

  36. Inoue K, Karashima T, Kamada M, Shuin T, Kurabayashi A, Furihata M, Fujita H, Utsumi K, Sasaki J (2009) Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX accumulation in human urothelial carconamas. Pathobiology 76:303–314

    Article  CAS  PubMed  Google Scholar 

  37. Ohgari Y, Nakayasu Y, Kitajima S, Sawamoto M, Mori H, Shimokawa O, Matsui H, Taketani S (2005) Machanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrocholatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol 71:42–49

    Article  CAS  PubMed  Google Scholar 

  38. Inoue A, Muranaka S, Fujita H, Kanno T, Tamai H, Utsumi K (2004) Molecular mechanism of diclophenac-induced apoptosis of promyelocytic leukemia: dependency on reactive oxygen species, akt, Bid cytochrome and capase pathway. Free Radic Biol Med 37:1290–1299

    Article  CAS  PubMed  Google Scholar 

  39. Krieg RC, Fickweiler S, Wolfbeis OS, Knuechel R (2002) Celltype specifis protoporphyrin IX metabolism in human bladder cancer in vitro. Photochem Photobiol 72:226–233

    Article  Google Scholar 

  40. Piccineli P, Samuelson T (2007) Evolution of the iron-responsive element. RNA 13:952–966

    Article  Google Scholar 

  41. Hefti M, Albert I, Luginbuehl V (2012) Phenytoin reduces 5-aminolevulinic acid-induced protoporphyrin IX accumulation in malignant glioma cells. J Neurooncol 108:443–450

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Chen X, Wu J, Liu H, Ji Z, Shi H, Gao C, Han D, Wang L, Liu Y, Yang G, Fu C, Zhang D, Liu Z, Li X, Yin F, Zhao S (2013) Low-dose arsenic trioxide enhances 5-aminolevulinic acid-induced PpIX accumulation and efficacy of photodynamic therapy in human glioma. J Photochem Photobiol B 127:61–67

    Article  CAS  PubMed  Google Scholar 

  43. Anand S, Honari G, Hasan T, Elson P, Maytin EV (2009) Low dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and vivo. Clin Cancer Res 15:3333–3343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sinha AK, Anand S, Ortel BJ et al (2006) Methotraxate used in combination with aminolevulinic acid for photodynamic killing of prostate cancer cells. Br J Cancer 95:485–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Webber J, Kessel D, Fromm D (1997) Side effects and photosensensitization of human tissues after aminolevulinic acid. J Surg Res 68:31–37

    Article  CAS  PubMed  Google Scholar 

  46. Webber J, Kessel D, Fromm D (1997) Plasma levels of protoporphyrin IX in humans after oral administration of 5-aminolevulinic acid. J Photochem Photobiol B 37:151–153

    Article  CAS  PubMed  Google Scholar 

  47. Ritz R, Scheidle C, Noell S, Roser F, Schenk M, Dietz K, Strauss WS (2012) In vitro comparison of hypericin and 5-aminolevulinic acid-derived protoporphyrin IX for photodynamic inactivation of medulloblastoma cells. PLoS One 7:e51974. doi:10.1371/journal.pone.0051974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dalton JT, Yates CR, Yin D, Straughn A, Marcus SL, Golub AL, Meyer MC (2002) Clinical pharmacokinetics of 5-aminolevulinic acid in healthy volunteers and patients at high risk for recurrent bladder cancer. J Pharmacol Exp Ther 301:507–512

    Article  CAS  PubMed  Google Scholar 

  49. Kortmann RD, Kühl J, Timmermann B, Mittler U, Urban C, Budach V, Richter E, Willich N, Flentje M, Berthold F, Slavc I, Wolff J, Meisner C, Wiestler O, Sörensen N, Warmuth-Metz M, Bamberg M (2000) Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of German prospective randomized trial HIT 91. Int J Radiat Oncol Biol Phys 46:269–279

    Article  CAS  PubMed  Google Scholar 

  50. Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, Hammond GD (1993) Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery 33:1026–1029, discussion 1029–1030

    Article  CAS  PubMed  Google Scholar 

  51. Albright AL (1993) Pediatric brain tumors. CA Cancer 43:272–288

    Article  CAS  Google Scholar 

  52. Hirsch JF, Sainte Rose C, Pierre-Kahn A, Pfister A, Hoppe-Hirsch E (1989) Benign astrocytic and oligodendrocytic tumors of the cerebral hemispheres in children. J Neurosurg 70:568–572

    Article  CAS  PubMed  Google Scholar 

  53. Packer RJ, Cogen P, Vezina G, Rorke LB (1999) Medulloblastoma: clinical and biologic aspects. Neuro Oncol 1:232–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Albright AL, Wisoff JH, Zeltzer P, Boyett J, Rorke LB, Stanley P, Geyer JR, Milsstein JM (1995) Prognostic factors in children with supratentorial (nonpineal) primitive neuroectodermal tumors. A neurosurgical perspective from the Children’s Cancer Group. Pediatr Neurosurg 22:1–7

    Article  CAS  PubMed  Google Scholar 

  55. Albright AL, Wisoff JH, Zeltzer PM, Boyett JM, Rorke LB, Stanley P (1996) Effects of medulloblastoma resections on outcome in children: a report from the Children’s Cancer Group. Neurosurgery 38:265–271

    Article  CAS  PubMed  Google Scholar 

  56. Wisoff JH, Boyett JM, Berger MS, Brant C, Li H, Yates AJ, McGuire-Cullen P, Turski PA, Sutton LN, Allen JC, Packer RJ, Finlay JL (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J Neurosurg 89:52–59

    Article  CAS  PubMed  Google Scholar 

  57. Zacharoulis S, Moreno L (2009) Ependymoma: an update. J Child Neurol 24:1431–1438

    Article  PubMed  Google Scholar 

  58. Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48:799–807

    CAS  PubMed  Google Scholar 

  59. Lam CH, Hall WA, Truwit CL, Liu H (2001) Intra-operative MRI-giuded approaches to the pediatric posterior fossa tumors. Pediatr Neurosurg 34:295–300

    Article  CAS  PubMed  Google Scholar 

  60. Roth J, Beni-Adani L, Biyani N, Constantini S (2006) Classical and real-time neuronavigation in pediatric neurosurgery. Child Nerv Syst 22:1065–1071

    Article  Google Scholar 

  61. Roth J, Biyani N, Beni-Adani L, Constantini S (2007) Real time neuronavigation with high quality 3D ultrasound SonoWand in pediatric neurosurgery. Pediatr Neurosurg 43:185–191

    Article  PubMed  Google Scholar 

  62. Willems PW, van der Sprenkel JW, Tulleken CA, Viergever MA, Taphoorn MJ (2006) Neuronavigation and surgery of intracerebral tumours. J Neurol 253:1123–1136

    Article  CAS  PubMed  Google Scholar 

  63. Beck TJ, Kerth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Laser Surg Med 39:386–393

    Article  Google Scholar 

  64. Etminan N, Peters C, Lakbir D, Bünemann E, Börger V, Sabel MC, Hänngi D, Steiger HJ, Stummer W, Sorg RV (2011) Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br J Cancer 105:961–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Etminan N, Peters C, Fincar S, Anlasik S, Bünemann E, Slotty PJ, Hänngi D, Steiger HJ, Sorg RV, Stummer W (2011) Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid-based photodynamic treatment. Laboratory investigation. J Neurosurg 115:281–288

    Article  CAS  PubMed  Google Scholar 

  66. Stummer W, Beck T, Beyer W, Mehrkens JH, Obermeier A, Etminan N, Stepp H, Tonn JC, Baumgartner R, Herms J, Kreth FW (2008) Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol 87:103–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author Christian Ewelt was supported by the fund “Innovative Medical Research” of the University of Münster Medical School (grant SE 111120).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schwake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwake, M., Günes, D., Köchling, M. et al. Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid. Acta Neurochir 156, 1077–1084 (2014). https://doi.org/10.1007/s00701-014-2096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-014-2096-7

Keywords

Navigation