Skip to main content
Log in

Genotypic diversity of apomictic microspecies of the Taraxacum scanicum group (Taraxacum sect. Erythrosperma)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Populations of polyploid apomictic dandelions consist of a mixture of clonal genotypes that are nearly phenotypically and genetically uniform. Some apomictic taxa are widespread, but many other taxa occur locally or at a single locality. Additionally, certain Central European dandelion populations consist of both diploid sexuals and polyploid apomicts, and the gene flow expected in mixed populations obscures clear genetic and morphological borders among apomictic taxa. In the present study, we investigated genotypic diversity among seven apomictic microspecies coexisting in Central Europe. Using microsatellites, amplified fragment length polymorphism and chloroplast DNA markers, we focused on the clonal structure of apomictic taxa, i.e., whether the studied apomictic taxa are represented by one or a few related genotypes or whether they are represented by many different and unrelated genotypes. The pattern of genotypic diversity within the studied microspecies suggests both intra- and inter-specific genetic diversification. At the intra-specific level, the studied apomictic taxa consist of several related genotypes, and difference among these genotypes is the result of somatic mutations and/or the consequence of repeated origin from different lineages or recent hybridisation. The inter-specific genetic diversity is greater and may reflect a different evolutionary origin of apomictic taxa. Our results show that despite their increased genetic diversity, apomictic dandelions form definable clusters that may be characterised by both molecular markers and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asker SE, Jerling L (1992) Apomixis in Plants. CRC Press, Boca Raton

    Google Scholar 

  • Battjes J, Menken SBJ, den Nijs HCM (1992) Clonal diversity in some microspecies of Taraxacum sect. Palustria (Lindb. fil.) Dahlst. from Czechoslovakia. Bot Jahrb Syst 114:315–328

    Google Scholar 

  • Birky CW (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144:427–437

    PubMed  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Bot J Linn Soc 61:51–94

    Article  Google Scholar 

  • Charleworth D, Morgan MT, Charlesworth B (1993) Mutation accumulation in finite populations. J Hered 84:321–325

    Google Scholar 

  • Corral JM, Piwczynski M, Sharbel TF (2009) Allelis sequence divergence in the apomictic Boechera holboellii complex. In: Schön I, Martens K, van Dijk PJ (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer, London, pp 495–516

    Chapter  Google Scholar 

  • Nijs JCM den (1997) Taraxacum: ploidy levels, hybridization and speciation. The advantage and consequence of combining reproductive systems. Lagascalia 19:45–V

  • Nijs JCM den, Menken SBJ (1996) Relations between breeding system, ploidy level and taxonomy in some advanced section of Taraxacum. In: Hind DJN, Beentje HJ (eds) Proceedings of the International Compositae Conference, Kew, pp 665–677

  • den Nijs JCM, Kirschner J, Štěpánek J, van der Hulst A (1990) Distribution of diploid sexual plants of Taraxacum sect. Ruderalia in east-central Europe, with special reference to Czechoslovakia. Pl Syst Evol 170:71–84

    Article  Google Scholar 

  • Dobeš C, Paule J (2010) A comprehensive chloroplast DNA-based phylogeny of the genus Potentilla (Rosaceae): implications for its geographic origin, phylogeography and generic circumscription. Molec Phylogen Evol 56:156–175

    Article  Google Scholar 

  • Doll R (1973) Revision der sect. Erythrosperma Dahlst. emend. Lindb. f. der Gattung Taraxacum Zinn. 2.. Teil Feddes Repert 84:1–180

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604

    Article  Google Scholar 

  • Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Res 10:564–567

    Article  Google Scholar 

  • Falque M, Keurentjes J, Bakx-Schotman T, van Dijk PJ (1998) Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion). Theor Appl Genet 97:283–292

    Article  CAS  Google Scholar 

  • Fehrer J, Krak K, Chrtek J (2009) Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol Biol 9:239. doi:10.1186/1471-2148-9-239

    Article  PubMed Central  PubMed  Google Scholar 

  • Ford H, Richards AJ (1985) Isozyme variation within and between Taraxacum agamospecies in a single locality. Heredity 55:289–291

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molec Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hughes J, Richards AJ (1988) The genestructure of populations of sexual and asexual Taraxacum (dandelions). Heredity 60:161–171

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Kiefer C, Dobeš C, Sharbel FT, Koch MA (2009) Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera—a genus and continental-wide perspective. Molec Phylogen Evol 52:303–311

    Article  CAS  Google Scholar 

  • Kirschner J, Štěpánek J (1994) Clonality as a part of the evolution process in Taraxacum. Folia Geobot Phytotax 29:265–275

    Article  Google Scholar 

  • Kirschner J, Štěpánek J (1996) Modes of speciation and evolution of the sections in Taraxacum. Folia Geobot Phytotax 31:415–426

    Article  Google Scholar 

  • Kirschner J, Štěpánek J (1998) A revision of Taraxacum sect. Piesis (Compositae). Folia Geobot 33:391–414

    Article  Google Scholar 

  • Kirschner J, Štěpánek J, Mes THM (2003) Principal features of the cpDNA evolution in Taraxacum (Asteraceae, Lactuceae): a conflict with taxonomy. Pl Syst Evol 239:231–255

    Article  CAS  Google Scholar 

  • Kitner M, Lebeda A, Doležalová I et al (2008) AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle East countries. Isr J Pl Sci 56:185–193

    Article  CAS  Google Scholar 

  • Kitner M, Majeský Ľ, Gillová L, Vymyslický T, Nagler M (2012) Genetic structure of Artemisia pancicii populations inferred from AFLP and cpDNA data. Preslia 84:97–120

    Google Scholar 

  • Lo EYY, Stefanović S, Dickinson TA (2010) Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution 64:3593–3608

    Article  PubMed  Google Scholar 

  • Loxdale H, Lushai G (2003) Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol J Linn Soc 79:3–16

    Article  Google Scholar 

  • Majeský Ľ, Vašut RJ, Kitner M, Trávníček B (2012) The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS One 8:e41868. doi:10.1371/journal.pone.0041868

    Article  Google Scholar 

  • Marciniuk J, Vašut RJ, Marciniuk P, Czarna A (2009) Taraxacum scanicum Dahlst. Group (section Erythrosperma) in Poland: chorology and seed and pollen morphology of the microspecies. Acta Soc Bot Pol 78:115–121

    Article  Google Scholar 

  • Mártonfiová L, Mártonfi P, Šuvada R (2010) Breeding behavior and its possible consequences for gene flow in Taraxacum sect. Erythrosperma (H. Lindb.) Dahlst. Plant Spec Biol 25:93–102

    Article  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Pl J 21:97–108

    Article  CAS  Google Scholar 

  • Meirmans PG, van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Molec Ecol Notes 4:792–794

    Article  Google Scholar 

  • Menken SBJ, Morita T (1989) Uniclonal population structure in the pentaploid obligate agamosperm Taraxacum albidum Dahlst. Pl Spec Biol 4:29–36

    Article  Google Scholar 

  • Menken SBJ, Hans ES, den Nijs JCM (1995) Genetical population structure in plants: gene flow between diploid sexual and triploid asexual dandelions (Taraxacum sect. Ruderalia). Evolution 49:1108–1118

    Article  Google Scholar 

  • Mes THM, Kuperus P, Kirschner J, Štěpánek J, Štorchová H, Oosterveld P, den Nijs JCM (2002) Detection of genetically divergent clone mates in apomictic dandelions. Molec Ecol 11:253–265

    Article  CAS  Google Scholar 

  • Mogie M (1985) Morphological, developmental and electrophoretic variation within and between obligately apomictic Taraxacum species. Biol J Linn Soc 24:207–216

    Article  Google Scholar 

  • Mogie M, Ford H (1988) Sexual and asexual Taraxacum species. Biol J Linn Soc 35:155–168

    Article  Google Scholar 

  • Morita T, Menken SBJ, Sterk AA (1990) Hybridization between European and Asian dandelions (Taraxacum section Ruderalia and section Mongolica). New Phytol 114:519–529

    Article  Google Scholar 

  • Øllgaard H (1986) Taraxacum discretum sp. nov. (Compositae). Nord J Bot 6:21–24

    Article  Google Scholar 

  • Paule J, Sharbel TF, Dobeš CH (2011) Apomictic and sexual lineages of the Potentilla argentea L. Group (Rosaceae): cytotype and molecular genetic differentiation. Taxon 60:721–732

    Google Scholar 

  • Paule J, Scherbantin A, Dobeš C (2012) Implication of hybridization and cytotypic differentiation in speciation assessed by AFLP and plastid haplotypes—a case study of Potentilla alpicola La Soie. BMC Evol Biol 12:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Paun O, Greilhuber J, Temsch EM, Hörandl E (2006) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Molec Ecol 15:897–910

    Article  CAS  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Reisch C (2004) Molecular differentitation between coexisting species of Taraxacum sect. Erythrosperma (Asteraceae) from populations in south-east and west Germany. Bot J Linn Soc 145:109–117

    Article  Google Scholar 

  • Richards AJ (1970) Eutriploid facultative agamospermy in Taraxacum. New Phytol 69:761–774

    Article  Google Scholar 

  • Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211

    Article  Google Scholar 

  • Richards AJ (1989) A comparison of within-plant karyological heterogeneity between agamospermous and sexual Taraxacum (Compositae) as assessed by the nucleolar organizer chromosome. Pl Syst Evol 163:177–185

    Article  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572

    Article  Google Scholar 

  • Schmid M (2002) Taraxacum multiglossum, eine neue Löwenzahn-Art (Taraxacum G.H. Weber ex Wiggers) aus der Sektion Erythrosperma (H Lindb. fil.) Dahlst. von der Fränkischen Alb. Ber Bayer Bot Ges 72:103–109

    Google Scholar 

  • Schmid M, Vašut RJ, Oosterveld P (2004) Taraxacum prunicolor sp. nova, a new species of the Taraxacum scanicum group (sect. Erythrosperma). Feddes Repert 115:220–229

    Article  Google Scholar 

  • Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79:151–163

    Article  Google Scholar 

  • Šuvada R, Mártonfi P, Mártonfiová L (2012) Differentiation of diploid and triploid taxa within Taraxacum sect. Erythrosperma (Asteraceae) from the Pannonian region. Folia Geobot 47:69–91

    Article  Google Scholar 

  • van der Hulst RGM, Mes THM, Falque M, Stam P, den Nijs JCM, Bachmann K (2003) Genetic structure of a population sample of apomictic dandelions. Heredity 90:326–335

    Article  Google Scholar 

  • van Dijk PJ, Bakx-Schotman JMT (2004) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum) is controlled by a sex-specific dominant gene. Genetics 166:483–492

    Article  PubMed Central  PubMed  Google Scholar 

  • van Oostrum H, Sterk AA, Wijsman HJW (1985) Genetic variation in agamosperous microspecies of Taraxacum sect. Erythrosperma and sect. Obliqua. Heredity 55:223–228

    Article  Google Scholar 

  • Vašut RJ (2003) Taraxacum sect. Erythrosperma in Moravia (Czech Republic): taxonomic notes and the distribution of previously described species. Preslia 75:311–338

    Google Scholar 

  • Vašut RJ, van Dijk PJ, Falque M, Trávníček B, de Jong JH (2004) Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae). Molec Ecol 4:645–648

  • Vašut RJ, Štěpánek J, Kirschner J (2005) Two new apomictic Taraxacum microspecies of the section Erythrosperma from Central Europe. Preslia 77:197–210

    Google Scholar 

  • Verduijn MH, van Dijk PJ, van Damme JMM (2004) The role of tetraploids in the sexual-asexual cycle in dandelions (Taraxacum). Heredity 93:390–398

    Article  CAS  PubMed  Google Scholar 

  • Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Pl Sci 169:169–182

    Article  Google Scholar 

  • Wilkinson M (2001) PICA 4.0: Software and documentation. Department of Zoology, The Natural History Museum, London

  • Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Molec Ecol 8:2023–2035

    Article  CAS  Google Scholar 

  • Záveská-Drábková L, Kirschner J, Štěpánek J, Záveský L, Vlček Č (2009) Analysis of nrDNA polymorphism in closely related diploid sexual, tetraploid sexual and polyploid agamospermous species. Pl Syst Evol 278:67–85

    Article  Google Scholar 

Download references

Acknowledgments

We thank Petra Macháčková for performing the FCSS analyses. LM thanks Mária Čudejková for patience and support. The research was supported by a grant from the Czech Science Foundation [206/09/P356 to RJV, 206/09/1126 to RJV], Internal Grant Agency of the Palacký University funds [PrF-2013-003, IGA_PrF_2014001, PrF_2015_001], European Social Fund, The Education for Competitiveness Operational Programme [CZ.1.07/2.3.00/30.0004 to LM], and Ministry of Education, Youth and Sports of the Czech Republic [MSM 6198959215 to MK].

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľuboš Majeský.

Additional information

Handling editor: Karol Marhold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 663 kb)

Supplementary material 2 (TXT 21 kb)

Appendix

Appendix

See Table 4.

Table 4 List of Taraxacum sect. Erythrosperma samples used in the present study with sampling details

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeský, Ľ., Vašut, R.J. & Kitner, M. Genotypic diversity of apomictic microspecies of the Taraxacum scanicum group (Taraxacum sect. Erythrosperma). Plant Syst Evol 301, 2105–2124 (2015). https://doi.org/10.1007/s00606-015-1218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1218-x

Keywords

Navigation