Plant Systematics and Evolution

, Volume 301, Issue 8, pp 2105–2124 | Cite as

Genotypic diversity of apomictic microspecies of the Taraxacum scanicum group (Taraxacum sect. Erythrosperma)

  • Ľuboš Majeský
  • Radim J. Vašut
  • Miloslav Kitner
Original Article


Populations of polyploid apomictic dandelions consist of a mixture of clonal genotypes that are nearly phenotypically and genetically uniform. Some apomictic taxa are widespread, but many other taxa occur locally or at a single locality. Additionally, certain Central European dandelion populations consist of both diploid sexuals and polyploid apomicts, and the gene flow expected in mixed populations obscures clear genetic and morphological borders among apomictic taxa. In the present study, we investigated genotypic diversity among seven apomictic microspecies coexisting in Central Europe. Using microsatellites, amplified fragment length polymorphism and chloroplast DNA markers, we focused on the clonal structure of apomictic taxa, i.e., whether the studied apomictic taxa are represented by one or a few related genotypes or whether they are represented by many different and unrelated genotypes. The pattern of genotypic diversity within the studied microspecies suggests both intra- and inter-specific genetic diversification. At the intra-specific level, the studied apomictic taxa consist of several related genotypes, and difference among these genotypes is the result of somatic mutations and/or the consequence of repeated origin from different lineages or recent hybridisation. The inter-specific genetic diversity is greater and may reflect a different evolutionary origin of apomictic taxa. Our results show that despite their increased genetic diversity, apomictic dandelions form definable clusters that may be characterised by both molecular markers and morphology.


AFLP Apomixis Gene flow Genotypic diversity Mutations SSR 



We thank Petra Macháčková for performing the FCSS analyses. LM thanks Mária Čudejková for patience and support. The research was supported by a grant from the Czech Science Foundation [206/09/P356 to RJV, 206/09/1126 to RJV], Internal Grant Agency of the Palacký University funds [PrF-2013-003, IGA_PrF_2014001, PrF_2015_001], European Social Fund, The Education for Competitiveness Operational Programme [CZ.1.07/2.3.00/30.0004 to LM], and Ministry of Education, Youth and Sports of the Czech Republic [MSM 6198959215 to MK].

Conflict of interest

The authors have declared that there is no conflict of interest.

Supplementary material

606_2015_1218_MOESM1_ESM.pdf (663 kb)
Supplementary material 1 (PDF 663 kb)
606_2015_1218_MOESM2_ESM.txt (22 kb)
Supplementary material 2 (TXT 21 kb)


  1. Asker SE, Jerling L (1992) Apomixis in Plants. CRC Press, Boca RatonGoogle Scholar
  2. Battjes J, Menken SBJ, den Nijs HCM (1992) Clonal diversity in some microspecies of Taraxacum sect. Palustria (Lindb. fil.) Dahlst. from Czechoslovakia. Bot Jahrb Syst 114:315–328Google Scholar
  3. Birky CW (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144:427–437PubMedGoogle Scholar
  4. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Bot J Linn Soc 61:51–94CrossRefGoogle Scholar
  5. Charleworth D, Morgan MT, Charlesworth B (1993) Mutation accumulation in finite populations. J Hered 84:321–325Google Scholar
  6. Corral JM, Piwczynski M, Sharbel TF (2009) Allelis sequence divergence in the apomictic Boechera holboellii complex. In: Schön I, Martens K, van Dijk PJ (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer, London, pp 495–516CrossRefGoogle Scholar
  7. Nijs JCM den (1997) Taraxacum: ploidy levels, hybridization and speciation. The advantage and consequence of combining reproductive systems. Lagascalia 19:45–VGoogle Scholar
  8. Nijs JCM den, Menken SBJ (1996) Relations between breeding system, ploidy level and taxonomy in some advanced section of Taraxacum. In: Hind DJN, Beentje HJ (eds) Proceedings of the International Compositae Conference, Kew, pp 665–677Google Scholar
  9. den Nijs JCM, Kirschner J, Štěpánek J, van der Hulst A (1990) Distribution of diploid sexual plants of Taraxacum sect. Ruderalia in east-central Europe, with special reference to Czechoslovakia. Pl Syst Evol 170:71–84CrossRefGoogle Scholar
  10. Dobeš C, Paule J (2010) A comprehensive chloroplast DNA-based phylogeny of the genus Potentilla (Rosaceae): implications for its geographic origin, phylogeography and generic circumscription. Molec Phylogen Evol 56:156–175CrossRefGoogle Scholar
  11. Doll R (1973) Revision der sect. Erythrosperma Dahlst. emend. Lindb. f. der Gattung Taraxacum Zinn. 2.. Teil Feddes Repert 84:1–180CrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604CrossRefGoogle Scholar
  14. Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Res 10:564–567CrossRefGoogle Scholar
  15. Falque M, Keurentjes J, Bakx-Schotman T, van Dijk PJ (1998) Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion). Theor Appl Genet 97:283–292CrossRefGoogle Scholar
  16. Fehrer J, Krak K, Chrtek J (2009) Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol Biol 9:239. doi: 10.1186/1471-2148-9-239 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Ford H, Richards AJ (1985) Isozyme variation within and between Taraxacum agamospecies in a single locality. Heredity 55:289–291CrossRefGoogle Scholar
  18. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molec Ecol Notes 2:618–620CrossRefGoogle Scholar
  19. Hughes J, Richards AJ (1988) The genestructure of populations of sexual and asexual Taraxacum (dandelions). Heredity 60:161–171CrossRefGoogle Scholar
  20. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  21. Kiefer C, Dobeš C, Sharbel FT, Koch MA (2009) Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera—a genus and continental-wide perspective. Molec Phylogen Evol 52:303–311CrossRefGoogle Scholar
  22. Kirschner J, Štěpánek J (1994) Clonality as a part of the evolution process in Taraxacum. Folia Geobot Phytotax 29:265–275CrossRefGoogle Scholar
  23. Kirschner J, Štěpánek J (1996) Modes of speciation and evolution of the sections in Taraxacum. Folia Geobot Phytotax 31:415–426CrossRefGoogle Scholar
  24. Kirschner J, Štěpánek J (1998) A revision of Taraxacum sect. Piesis (Compositae). Folia Geobot 33:391–414CrossRefGoogle Scholar
  25. Kirschner J, Štěpánek J, Mes THM (2003) Principal features of the cpDNA evolution in Taraxacum (Asteraceae, Lactuceae): a conflict with taxonomy. Pl Syst Evol 239:231–255CrossRefGoogle Scholar
  26. Kitner M, Lebeda A, Doležalová I et al (2008) AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle East countries. Isr J Pl Sci 56:185–193CrossRefGoogle Scholar
  27. Kitner M, Majeský Ľ, Gillová L, Vymyslický T, Nagler M (2012) Genetic structure of Artemisia pancicii populations inferred from AFLP and cpDNA data. Preslia 84:97–120Google Scholar
  28. Lo EYY, Stefanović S, Dickinson TA (2010) Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution 64:3593–3608CrossRefPubMedGoogle Scholar
  29. Loxdale H, Lushai G (2003) Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol J Linn Soc 79:3–16CrossRefGoogle Scholar
  30. Majeský Ľ, Vašut RJ, Kitner M, Trávníček B (2012) The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS One 8:e41868. doi: 10.1371/journal.pone.0041868 CrossRefGoogle Scholar
  31. Marciniuk J, Vašut RJ, Marciniuk P, Czarna A (2009) Taraxacum scanicum Dahlst. Group (section Erythrosperma) in Poland: chorology and seed and pollen morphology of the microspecies. Acta Soc Bot Pol 78:115–121CrossRefGoogle Scholar
  32. Mártonfiová L, Mártonfi P, Šuvada R (2010) Breeding behavior and its possible consequences for gene flow in Taraxacum sect. Erythrosperma (H. Lindb.) Dahlst. Plant Spec Biol 25:93–102CrossRefGoogle Scholar
  33. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Pl J 21:97–108CrossRefGoogle Scholar
  34. Meirmans PG, van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Molec Ecol Notes 4:792–794CrossRefGoogle Scholar
  35. Menken SBJ, Morita T (1989) Uniclonal population structure in the pentaploid obligate agamosperm Taraxacum albidum Dahlst. Pl Spec Biol 4:29–36CrossRefGoogle Scholar
  36. Menken SBJ, Hans ES, den Nijs JCM (1995) Genetical population structure in plants: gene flow between diploid sexual and triploid asexual dandelions (Taraxacum sect. Ruderalia). Evolution 49:1108–1118CrossRefGoogle Scholar
  37. Mes THM, Kuperus P, Kirschner J, Štěpánek J, Štorchová H, Oosterveld P, den Nijs JCM (2002) Detection of genetically divergent clone mates in apomictic dandelions. Molec Ecol 11:253–265CrossRefGoogle Scholar
  38. Mogie M (1985) Morphological, developmental and electrophoretic variation within and between obligately apomictic Taraxacum species. Biol J Linn Soc 24:207–216CrossRefGoogle Scholar
  39. Mogie M, Ford H (1988) Sexual and asexual Taraxacum species. Biol J Linn Soc 35:155–168CrossRefGoogle Scholar
  40. Morita T, Menken SBJ, Sterk AA (1990) Hybridization between European and Asian dandelions (Taraxacum section Ruderalia and section Mongolica). New Phytol 114:519–529CrossRefGoogle Scholar
  41. Øllgaard H (1986) Taraxacum discretum sp. nov. (Compositae). Nord J Bot 6:21–24CrossRefGoogle Scholar
  42. Paule J, Sharbel TF, Dobeš CH (2011) Apomictic and sexual lineages of the Potentilla argentea L. Group (Rosaceae): cytotype and molecular genetic differentiation. Taxon 60:721–732Google Scholar
  43. Paule J, Scherbantin A, Dobeš C (2012) Implication of hybridization and cytotypic differentiation in speciation assessed by AFLP and plastid haplotypes—a case study of Potentilla alpicola La Soie. BMC Evol Biol 12:132PubMedCentralCrossRefPubMedGoogle Scholar
  44. Paun O, Greilhuber J, Temsch EM, Hörandl E (2006) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Molec Ecol 15:897–910CrossRefGoogle Scholar
  45. R Development Core Team (2009) R: A language and environment for statistical computing. Austria, ViennaGoogle Scholar
  46. Reisch C (2004) Molecular differentitation between coexisting species of Taraxacum sect. Erythrosperma (Asteraceae) from populations in south-east and west Germany. Bot J Linn Soc 145:109–117CrossRefGoogle Scholar
  47. Richards AJ (1970) Eutriploid facultative agamospermy in Taraxacum. New Phytol 69:761–774CrossRefGoogle Scholar
  48. Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211CrossRefGoogle Scholar
  49. Richards AJ (1989) A comparison of within-plant karyological heterogeneity between agamospermous and sexual Taraxacum (Compositae) as assessed by the nucleolar organizer chromosome. Pl Syst Evol 163:177–185CrossRefGoogle Scholar
  50. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572CrossRefGoogle Scholar
  51. Schmid M (2002) Taraxacum multiglossum, eine neue Löwenzahn-Art (Taraxacum G.H. Weber ex Wiggers) aus der Sektion Erythrosperma (H Lindb. fil.) Dahlst. von der Fränkischen Alb. Ber Bayer Bot Ges 72:103–109Google Scholar
  52. Schmid M, Vašut RJ, Oosterveld P (2004) Taraxacum prunicolor sp. nova, a new species of the Taraxacum scanicum group (sect. Erythrosperma). Feddes Repert 115:220–229CrossRefGoogle Scholar
  53. Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79:151–163CrossRefGoogle Scholar
  54. Šuvada R, Mártonfi P, Mártonfiová L (2012) Differentiation of diploid and triploid taxa within Taraxacum sect. Erythrosperma (Asteraceae) from the Pannonian region. Folia Geobot 47:69–91CrossRefGoogle Scholar
  55. van der Hulst RGM, Mes THM, Falque M, Stam P, den Nijs JCM, Bachmann K (2003) Genetic structure of a population sample of apomictic dandelions. Heredity 90:326–335CrossRefGoogle Scholar
  56. van Dijk PJ, Bakx-Schotman JMT (2004) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum) is controlled by a sex-specific dominant gene. Genetics 166:483–492PubMedCentralCrossRefPubMedGoogle Scholar
  57. van Oostrum H, Sterk AA, Wijsman HJW (1985) Genetic variation in agamosperous microspecies of Taraxacum sect. Erythrosperma and sect. Obliqua. Heredity 55:223–228CrossRefGoogle Scholar
  58. Vašut RJ (2003) Taraxacum sect. Erythrosperma in Moravia (Czech Republic): taxonomic notes and the distribution of previously described species. Preslia 75:311–338Google Scholar
  59. Vašut RJ, van Dijk PJ, Falque M, Trávníček B, de Jong JH (2004) Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae). Molec Ecol 4:645–648Google Scholar
  60. Vašut RJ, Štěpánek J, Kirschner J (2005) Two new apomictic Taraxacum microspecies of the section Erythrosperma from Central Europe. Preslia 77:197–210Google Scholar
  61. Verduijn MH, van Dijk PJ, van Damme JMM (2004) The role of tetraploids in the sexual-asexual cycle in dandelions (Taraxacum). Heredity 93:390–398CrossRefPubMedGoogle Scholar
  62. Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Pl Sci 169:169–182CrossRefGoogle Scholar
  63. Wilkinson M (2001) PICA 4.0: Software and documentation. Department of Zoology, The Natural History Museum, LondonGoogle Scholar
  64. Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Molec Ecol 8:2023–2035CrossRefGoogle Scholar
  65. Záveská-Drábková L, Kirschner J, Štěpánek J, Záveský L, Vlček Č (2009) Analysis of nrDNA polymorphism in closely related diploid sexual, tetraploid sexual and polyploid agamospermous species. Pl Syst Evol 278:67–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Ľuboš Majeský
    • 1
  • Radim J. Vašut
    • 1
  • Miloslav Kitner
    • 1
  1. 1.Department of Botany, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations