Skip to main content
Log in

Origin and systematic position of Jacobaea vulgaris (Asteraceae) octoploids: genetic and morphological evidence

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Five cytotypes have been reported for Jacobaea vulgaris (syn.: Senecio jacobaea); three of them with euploid (tetraploid, hexaploid, and octoploid; 2n = 40, 60, and 80) and one with aneuploid (2n = 32) chromosome numbers. Among them, only tetra- and octoploid cytotypes are regularly found, the other two are very rare. In this study we re-evaluated the origin and systematic position of J. vulgaris octoploids. DNA ploidy levels, morphological, and genetic (AFLP, amplified fragment length polymorphism) data were generated for 38 populations of J. vulgaris from Central and Eastern Europe, and adjacent parts of North-Western Europe. Genetic dataset was supplemented with 16 populations of five closely related species: J. alpina, J. aquatica, J. erratica, J. erucifolia, and J. subalpina. The octoploid cytotype of J. vulgaris, known thus far only from Pannonia and Ukrainian Podillya regions, has also been found on two Baltic islands, Öland and Gotland. AFLP analyses showed clear genetic differences between tetra- and octoploid cytotypes and revealed that all octoploid plants are most likely of autopolyploid origin. The AFLP data also indicate that octoploids form two separate allopatric and monophyletic lineages, one represented by Pannonian and Öland populations, and the other represented by the populations from Podillya and Gotland. The octoploids from Gotland correspond to the previously recognized subspecies J. vulgaris subsp. gotlandica. The octoploids distributed in Pannonia are described here as a new subspecies, J. vulgaris subsp. pannonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott RJ, James JK, Milne RI, Gillies ACM (2003) Plant introductions, hybridization, and gene flow. Philos Trans Ser B 358:1123–1132

    Article  CAS  Google Scholar 

  • Ahlgren H (2011) The origin of the mountain hare on the island of Gotland. Master thesis, Stockholm University

  • Andersson S (2001a) Fitness consequences of floral variation in Senecio jacobaea (Asteraceae): evidence from a segregating hybrid population and a resource manipulation experiment. Biol J Linn Soc 74:17–24

    Article  Google Scholar 

  • Andersson S (2001b) The genetic basis of floral variation in Senecio jacobaea (Asteraceae). J Heredity 92:409–414

    Article  CAS  Google Scholar 

  • Bain JF (1991) The biology of Canadian weeds. 96. Senecio jacobaea L. Canad J Pl Sci 71:127–140

    Article  Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary Int 27:19–40

    Article  Google Scholar 

  • Bolkhovskikh ZV, Grif VG, Zakharyeva OI, Matveva TS (1969) Chromosome numbers of flowering plants. Nauka, Leningrad

    Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Molec Ecol 13:3261–3273

    Article  CAS  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1945) Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae. Carnegie Institute of Washington, Washington, DC

  • Conti F, Bartolucci F, Tomović G, Lakušić D (2012) Jacobaea vulgaris subsp. gotlandica (Compositae), new for Italy and Montenegro. Bot Serbica 36:145–147

    Google Scholar 

  • Corander J, Marttinen P, Mäntyniemi S (2006) Bayesian identification of stock mixtures from molecular marker data. Fishery Bull 104:550–558

    Google Scholar 

  • Dobeš Ch, Vitek E (2000) Documented chromosome number checklist of Austrian vascular plants. Verlag des Naturhistorischen Museums Wien, Wien

    Google Scholar 

  • Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA mount in diploid bananas (Musa acuminata and M. balbisiana). Biol Pl 36:351–357

    Article  Google Scholar 

  • Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Molec Ecol 23:40–69

    Article  Google Scholar 

  • Dumortier BCJ (1827) Florula Belgica. Tournay

  • Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604

    Article  Google Scholar 

  • Ekstam U, Jacobson R, Mattson M, Porsne T (1984) Ölands och Gotlands växtvärld. Bokförlaget Natur och Kultur, Stockholm

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed Central  CAS  Google Scholar 

  • Greiner R, Vogt R, Oberprieler C (2013) Evolution of the polyploid north-west Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) based on plastid DNA sequence variation and AFLP fingerprinting. Ann Bot (Oxford) 111:1109–1123

    Article  CAS  Google Scholar 

  • Grubbs KC, Small RL, Schilling EE (2009) Evidence for multiple, autoploid origins of agamospermous populations in Eupatorium sessilifolium (Asteraceae). Pl Syst Evol 279:151–161

    Article  Google Scholar 

  • Grulich V (2005) Senecio L. In: Štěpánková J, Slavík B (eds) Květena České republiky 7. Academia, Praha, pp 250–280

    Google Scholar 

  • Hedrén M, Fay MF, Chase MW (2001) Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Amer J Bot 88:1868–1880

    Article  Google Scholar 

  • Hodálová I, Grulich V, Horová L, Marhold K (2007a) Occurrence of tetraploid and octoploid cytotypes in Senecio jacobaea subsp. jacobaea (Asteraceae) in Pannonia and the Carpathians. Bot J Linn Soc 153:231–242

    Article  Google Scholar 

  • Hodálová I, Vinikarová A, Grulich V, Mereďa P Jr., Horová L (2007b) Reports. In: Marhold K (ed) IAPT/IOPB chromosome data 4. Taxon 56:1269, E1–E3

  • Hodálová I, Mereďa P Jr, Vinikárová A, Grulich V, Rotreklová O (2010) A new cytotype of Jacobaea vulgaris (Asteraceae): frequency, morphology and origin. Nordic J Bot 28:413–427

    Article  Google Scholar 

  • Holub J (1972) Senecio × choczensis Holub (S. jacobaeae L. × S. subalpinus Koch)—ein neuer Bastard innerhalb der Gattung Senecio L. Preslia 44:327–333

    Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Kadereit JW, Sell PD (1986) Variation in Senecio jacobaea L. (Asteraceae) in the British Isles. Watsonia 16:21–23

    Google Scholar 

  • Karlsson T (2001) Adonis L. In: Jonsell B (ed) Flora Nordica 2. The Royal Swedish Academy of Sciences, Stockholm, pp 334–335

    Google Scholar 

  • Kirk H, Máčel M, Klinkhamer PGL, Vrieling K (2004) Natural hybridization between Senecio jacobaea and Senecio aquaticus: molecular and chemical evidence. Molec Ecol 13:2267–2274

    Article  CAS  Google Scholar 

  • Klecka WR (1980) Discriminant analysis. Sage University papers, Beverly Hills

    Google Scholar 

  • Kockx-van Roon M, Wieffering JH (1982) Reports. In: Löve Á (ed) IOPB chromosome number reports LXXV. Taxon 31:367

  • Koutecký P, Štěpánek J, Baďurová T (2012) Differentiation between diploid and tetraploid Centaurea phrygia: mating barriers, morphology and geographic distribution. Preslia 84:1–32

    Google Scholar 

  • Krzanowski WJ (1990) Principles of multivariate analysis. Clarendon Press, Oxford

    Google Scholar 

  • Kuzmanović N, Comanescu P, Frajman B, Lazarević M, Paun O, Schönswetter P, Lakušić D (2013) Genetic, cytological and morphological differentiation within the Balkan-Carpathian Sesleria rigida sensu Fl. Eur. (Poaceae): a taxonomically intricate tetraploid-octoploid complex. Taxon 62:458–472

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Pl Sci 2:470–476

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Amer Naturalist 121:1–25

    Article  Google Scholar 

  • Linnaeus C (1753) Species plantarum 2. Holmiae

  • Löbel S, Dengler J (2007) Dry grassland communities on southern Öland: phytosociology, ecology, and diversity. Acta Phytogeogr Suec 88:13–31

    Google Scholar 

  • Lowe AJ, Abbott RJ (2004) Reproductive isolation of a new hybrid species, Senecio eboracensis Abbott & Lowe (Asteraceae). Heredity 92:386–395

    Article  CAS  PubMed  Google Scholar 

  • Macel M, Vrieling K, Klinkhamer PGL (2004) Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry 65:865–873

    Article  CAS  PubMed  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Májovský J, Murín A, Feráková V, Hindáková M, Schwarzová T, Uhríková A, Váchová M, Záborský J (1987) Karyotaxonomický prehl’ad flóry Slovenska. VEDA, Bratislava

    Google Scholar 

  • Mandáková T, Münzbergová Z (2008) Morphometric and genetic differentiation of diploid and hexaploid populations of Aster amellus agg. in contact zone. Pl Syst Evol 274:155–170

    Article  Google Scholar 

  • Marcussen T, Jakobsen KS, Danihelka J, Ballard H, Blaxland K, Brysting AK, Oxelman B (2012) Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst Biol 61:107–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin SL, Husband BC (2012) Whole Genome Duplication Affects Evolvability of Flowering Time in an Autotetraploid Plant. PLoS ONE 7:e44784. doi:10.1371/journal.pone.0044784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mereďa P Jr, Hodálová I, Mártonfi P, Kučera J, Lihová J (2008) Intraspecific variation in Viola suavis in Europe: parallel evolution of white flowered morphotypes. Ann Bot (Oxford) 102:443–462

    Article  Google Scholar 

  • Meusel H, Jäger EJ (1992) Vergleichende Chorologie der zentraleuropäischen Flora 3. G. Fischer, Jena

    Google Scholar 

  • Mráz P, Šingliarová B, Urfus T, Krahulec F (2008) Cytogeography of Pilosella officinarum (Compositae): altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Ann Bot (Oxford) 101:59–71

    Article  Google Scholar 

  • Murín A, Májovsky J (1987) Karyological study of the Slovak flora XIX. Acta Fac Rerum Nat Univ Comenianae Bot 34:3–20

    Google Scholar 

  • Murín A, Váchová M (1970) Reports. In: Májovský J et al. (eds) Index of chromosome numbers of Slovakian flora (part 1). Acta Fac Rerum Nat Univ Comenianae Bot 16:20

  • Murín A, Svobodová Z, Májovský J, Feráková V (1999) Chromosome numbers of some species of the Slovak flora. Thaiszia 9:31–40

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neuman LM, Ahlfvengren F (1901) Sveriges Flora. Lund

  • Nordenstam B (2006) Additions to the genus Jacobaea Mill. (Compositae-Senecioneae). Compositae Newslett 44:12–13

    Google Scholar 

  • Nordenstam B, Greuter W (2006) Jacobaea Mill. In: Greuter W, von Raab-Straube E (eds) Euro-Med Notulae, 2. Willdenowia 36:707–717

  • Nordenstam B, Pelser PB, Kadereit JW, Watson LE (2009) Senecioneae. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of Compositae. IAPT, Vienna, pp 503–525

    Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Rev Genet 34:401–437

    Article  CAS  Google Scholar 

  • Pelser PB, Gravendeel B, van der Meijden R (2003) Phylogeny reconstruction in the gap between too little and too much divergence: the closest relatives of Senecio jacobaea (Asteraceae) according to DNA sequences and AFLPs. Molec Phylogen Evol 29:613–628

    Article  CAS  Google Scholar 

  • Pelser PB, de Vos H, Theuring HC, Beuerle T, Vrieling K, Hartmann T (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Pelser PB, Veldkamp J-F, van der Meijden R (2006) New combinations in Jacobaea Mill. (Asteraceae–Senecioneae). Compositae Newslett 44:1–11

    Google Scholar 

  • Pelser PB, Nordenstam B, Kadereit JW, Watson LE (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1077–1104

    Article  Google Scholar 

  • Petit C, Bretagnolle F, Felber F (1999) Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol Evol 14:306–311

    Article  PubMed  Google Scholar 

  • Pettersson B (1965) Gotland and Öland. Two limestone islands compared. Acta Phytogeogr Suec 50:131–140

    Google Scholar 

  • Ramsey J, Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Philos Trans Ser B 369:20130352. doi:10.1098/rstb.2013.0352

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Richardson BA, Page JT, Bajgain P, Sanderson SC, Udall JA (2012) Deep sequencing of amplicons reveals widespread intraspecific hybridization and multiple origins of polyploidy in big sagebrush (Artemisia tridentata; Asteraceae). Amer J Bot 99:1962–1975

    Article  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation, and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Rosquist G, Prentice HC (2000) Habitat fragmentation and the structure of genetic diversity within disjunct isolates of Anthericum ramosum L. (Anthericaceae) in Scandinavia. Biol J Linn Soc 69:193–2012

    Article  Google Scholar 

  • Runyeon H, Prentice HC (1997) Genetic differentiation in the Bladder campions, Silene vulgaris and S. uniflora (Caryophyllaceae), in Sweden. Biol J Linn Soc 61:559–584

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • SAS Institute Inc. (2011) SAS ® 9.3 Product documentation. Cary, NC: SAS Institute. http://support.sas.com/documentation/93/index.html. Accessed 1 March 2014

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572

    Article  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molec Phylog Evol 42:92–103

    Article  Google Scholar 

  • Segraves KA, Thompson JN (1999) Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114–1127

    Article  Google Scholar 

  • Šingliarová B, Hodálová I, Mráz P (2011) Biosystematic study of the diploid-polyploid Pilosella alpicola group with variation in breeding system: patterns and processes. Taxon 60:450–470

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Principles and practice of numerical classification. W.H, Freeman, San Francisco

    Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Pl Sci 12:243–273

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Amer J Bot 96:336–348

    Article  Google Scholar 

  • Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don´t know about polyploidy. Taxon 59:1387–1403

    Google Scholar 

  • Sonnleitner M, Flatscher R, García PE, Rauchová J, Suda J, Schneeweiss GM, Hülber K, Schönswetter P (2010) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot (Oxford) 106:967–977

    Article  Google Scholar 

  • Španiel S, Marhold K, Hodálová I, Lihová J (2008) Diploid and tetraploid cytotypes of Centaurea stoebe (Asteraceae) in Central Europe: morphological differentiation and cytotype distribution patterns. Fol Geobot 43:131–158

    Article  Google Scholar 

  • Španiel S, Marhold K, Filová B, Zozomová-Lihová J (2011) Genetic and morphological variation in the diploid-polypoid Alyssum montanum in Central Europe: taxonomic and evolutionary considerations. Pl Syst Evol 294:1–25

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley Publishing Company, Reading, Massachusetts

    Google Scholar 

  • Sterner R, Lundqvist Å (1986) Ölands kärlväxtflora, 2nd edn. Lund, Svensk botanisk tidskrift, Forskningsrådens förlagstjänst, Stockholm

    Google Scholar 

  • Thompson JN, Nuismer SL, Merg K (2004) Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol J Linn Soc 82:503–510

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing Company, Reading, Massachusetts

    Google Scholar 

  • van den Brand C, van Meel FCM, Wieffering JH (1979) [Report]. In: Löve Á (ed) IOPB chromosome number reports LXIV. Taxon 28:397

  • Vanneste K, Maere S, Van de Peer Y (2014) Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos Trans Ser B 369:20130353. doi:10.1098/rstb.2013.0353

  • Vinikarová A (2009) Octoploid Senecio jacobaea versus S. erucifolius in South Moravia. Zprávy Čes Bot Společn 44:29–34

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijeters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wysk R, Nordenstam B, Kadereit JW, Westberg E (2009) The identity and geographical distribution of Jacobaea vulgaris subsp. gotlandica, supposedly endemic to Gotland and Öland (Sweden)–the importance of multiple intraspecific samples. Taxon 58:1133–1140

    Google Scholar 

  • Yeh FC, Yang RC, Timothy BJ, Ye Z, Judy M (1997) Pop Gene, the user-friendly shareware for population genetic analysis. University of Alberta, Alberta Molecular Biology and Biotechnology Centre, Alberta

    Google Scholar 

  • Zar JH (2010) Biostatistical Analysis, 5th end. Pearson Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Zozomová-Lihová J, Krak K, Mandáková T, Shimizu KK, Španiel S, Vít P, Lysak MA (2014) Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: revisiting a textbook example of neoallopolyploidy. Ann Bot (Oxford) 113:817–830

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Viera Feráková, Roman Letz (both Bratislava, Slovakia), Janka Smatanová (Považská Bystrica, Slovakia), and Alexandra Vinikarová (Brno, Czech Republic) for help with plant collection, and to Mikael Hedrén (Lund, Sweden) and anonymous reviewers for valuable comments to the manuscript. For providing information on Jacobaea localities and valuable advice and support, we are especially grateful to our Ukrainian colleague Alexander Kagalo (L´viv) and our colleagues from the Medobory Natural Reservation in Podillya, Vít Grulich (Brno, Czech Republic), Walter Till (Wien, Austria), and Pieter P. Pelser (Christchurch, New Zealand). We also wish to thank our colleagues from the Institute of Botany SAS, Judita Zozomová for her advice with molecular analyses and Viera Polakovičová for technical help. We thank the curators of the BP, LINN, LD, W, and WU herbaria for allowing us to study the herbarium specimens. This research was supported by the Slovak Research and Development Agency (grant no. APVV-0320-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iva Hodálová or Katarína Olšavská.

Additional information

Handling editor: Marcus Koch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodálová, I., Mereďa, P., Kučera, J. et al. Origin and systematic position of Jacobaea vulgaris (Asteraceae) octoploids: genetic and morphological evidence. Plant Syst Evol 301, 1517–1541 (2015). https://doi.org/10.1007/s00606-014-1163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1163-0

Keywords

Navigation