Skip to main content

Advertisement

Log in

Genetic structure in fragmented populations of Hippophae rhamnoides ssp. sinensis in China investigated by ISSR and cpSSR markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Hippophae rhamnoides ssp. sinensis is an ecologically and economically important species that has been widely used as a pioneer plant in China. In this study, we employed both nuclear ISSR and maternal cpSSR markers to survey the genetic diversity and structure of populations of ssp. sinensis representing three different landscapes, the northwestern desert and grassland region, the alpine vegetation region of the Qinghai-Tibetan Plateau, and the northeastern humid forest region. In all, 12 natural populations with a scattered distribution in the area were studied. The genetic diversities of populations were found to be uneven, and the total genetic diversity was low on the basis of both types of marker. Mantel tests based on both individual Euclidean distance matrices and population genetic distance (measured by Φpt) matrices showed that the two marker systems detected similar trends with respect to genetic distances between populations. The analysis of molecular variance (AMOVA) revealed significant differentiation among populations and among regions for both types of marker. Although the detected pattern of isolation-by-distance among all sampled populations confirmed the earlier colonization pathway, the low level of gene flow and the lack of isolation by distance within each region suggested the presence of an additional dispersal barrier. UPGMA dendrograms and PCA plots also revealed clear clustering and significant regional differentiation. Our results indicate that the genetic structure of ssp. sinensis has been affected by habitat fragmentation and restricted population sizes. We propose that the biology of reproduction and ecology have played determinant roles in the development of the regional structure of populations. The genetic information obtained will help to establish conservation strategies and programs for sustainable management of H. rhamnoides ssp. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitzetmuller K, Xin Y (1999) Sea buckthorn and sea buckthorn oils—recent developments in China and central Asia. Nahrung 43:228–232

    Article  PubMed  CAS  Google Scholar 

  • Avdeyev VI (1983) Novaya taksonomiya roda oblepikha: Hippophae L. Izv. Akad. Nauk. Tadzh. SSR. Biol. Nauk. 4:11–17

    Google Scholar 

  • Bartish IV, Jeppsson N, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Mol Ecol 8:791–802

    Article  CAS  Google Scholar 

  • Bartish IV, Jeppsson N, Bartish GI, Lu R, Nybom H (2000) Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers. Plant Syst Evol 225:85–101

    Article  CAS  Google Scholar 

  • Bartish IV, Jeppsson N, Nybom H, Swenson U (2002) Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Syst Bot 27:41–54

    Google Scholar 

  • Bryan GJ, McNicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99:859–867

    Article  CAS  Google Scholar 

  • Chen G, Wang Y, Zhao C, Korpelainen H, Li C (2008) Genetic diversity of Hippophae rhamnoides populations at varying altitudes in the Wolong Natural Reserve of China as revealed by ISSR markers. Silvae Genet 57:29–36

    Google Scholar 

  • Chen W, Su X, Zhang H, Sun K, Ma RJ, Chen XL (2010) High genetic differentiation of Hippophae rhamnoides ssp. yunnanensis (Elaeagnaceae), a plant endemic to the Qinghai-Tibet Plateau. Biochem Genet 48:565–576

    Article  PubMed  CAS  Google Scholar 

  • Cheng YJ, Meng HJ, Guo WW, Deng XX (2006) Universal chloroplast primer pairs for simple sequence repeat analysis in diverse genera of fruit crops. J Hortic Sci Biotechnol 81:132–138

    Google Scholar 

  • Excoffier L, Guillaume L, Schneider S (2007) ARLEQUIN (version 3.11): an integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab (CMPG). Zoological Institute, University of Berne, Switzerland

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics. Sinauer, Sunderland

    Google Scholar 

  • Heuertz M, Vekemans X, Hausman JF, Palada M, Hardy OJ (2003) Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Mol Ecol 12:2483–2495

    Article  PubMed  CAS  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalo grass Buchloe dactyloides (Nutt) Engelm. Theor Appl Genet 86:927–934

    Article  CAS  Google Scholar 

  • Isagi Y, Tateno R, Matsuki Y, Hirao A, Watanabe S, Shibata M (2007) Genetic and reproductive consequences of forest fragmentation for populations of Magnolia obovata. Ecol Res 22:382–389

    Article  Google Scholar 

  • Jump AS, Penuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  PubMed  CAS  Google Scholar 

  • Kettle CJ, Hollingsworth PM, Jaffre T, Moran B, Ennos RA (2007) Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Mol Ecol 16:3581–3591

    Article  PubMed  CAS  Google Scholar 

  • Li C, Xu G, Zang R, Korpelainen H, Berninger F (2007) Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiol 27:399–406

    PubMed  CAS  Google Scholar 

  • Lian YS (1988) New discoveries of the genus Hippophae L. (Elaeagnaceae). Acta Phytotax Sin 26:235–237 in Chinese

    Google Scholar 

  • Lian YS, Chen XL (1992) The ecogeographical distribution of Hippophae rhamnoides subsp. sinensis and its phytogeographical significance. Acta Phytotax Sin 30:349–355 in Chinese

    Google Scholar 

  • Lian YS, Chen XL (1996) The systematic classification of the genus Hippophae. Hippophae 9:15–24

    Google Scholar 

  • Lian YS, Chen XL, Wang F (1997) New discoveries of the genus Hippophae L. II. In: Lu S, Li M, Hu J, Liu S (eds) Worldwide research and development of sea buckthorn. China Science and Technology Press, Beijing, pp 60–65

    Google Scholar 

  • Lian Y, Chen X, Lian H (1998) Systematic classification of the genus Hippophae L. Seabuckthorn Res 1:13–23

    Google Scholar 

  • Lian YS, Lu SG, Xue SK, Chen XL (2000) Biology and chemistry of the genus Hippophae. Gansu Science and Technology Press, Lanzhou, pp 1–226 (in Chinese)

  • Liu SW, He TN (1978) The genus Hippophae from Qing-Zang plateau. Acta Phytotax Sin 16:106–108 (in Chinese)

    Google Scholar 

  • Lu R (1992) Sea buckthorn—a multipurpose plant species for fragile mountains. ICIMOD Occasional Paper No. 20. Kathmandu, Nepal

  • Lu R (1997) Eco-geographical distribution of sea buckthorn and prospects of International cooperation. In: Lu S, Li M, Hu J, Liu S (eds) Worldwide research and development of sea buckthorn. China Science and Technology Press, Beijing, pp 123–129

    Google Scholar 

  • Lu XW, Sun K, Ma RJ, Zhang H, Su X, Wang ML (2006) Fruits foraging patterns and seed dispersal effect of frugivorous birds on Hippophae rhamnoides sinensis. Front Biol China 3:318–322

    Article  Google Scholar 

  • Lu Z, Wang Y, Zhang X, Korpelainen H, Li C (2009) Genetic variation of isolated Picea balfouriana populations from the southeast of the Qinghai-Tibet Plateau. Ann For Sci 66:607 (p1–10)

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  Google Scholar 

  • Miller M (2000) TFPGA (version 1.3): tools for population genetic analysis, a windows program for the analysis of allozyme and molecular population genetic data. Department of Biological Sciences, Northern Arizona University

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • O’Connell LM, Mosseler A, Rajora OP (2006) Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 97:418–426

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra

    Google Scholar 

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides. Mol Ecol 4:135–147

    Article  CAS  Google Scholar 

  • Rousi A (1965) Observations on the cytology and variation of European and Asiatic populations of Hippophae rhamnoides. Ann Bot Fennici 2:1–18

    Google Scholar 

  • Rousi A (1971) The genus Hippophae L. A taxonomic study. Ann Bot Fennici 8:177–227

    Google Scholar 

  • Ruan CJ, Li DQ (2002) Analysis on the community characteristics of Hippophae rhamnoides L. plantation and water and nutrition of woodland in Loess Hilly Region. J Appl Ecol 13:1061–1064 (in Chinese)

    Google Scholar 

  • Servettaz C (1909) Monographie des Eleagnacees. Beih Bot Centralbl 25:1–40

    Google Scholar 

  • Sheng HM, An LZ, Chen T, Xu SJ, Liu GX, Zheng XL, Pu LL, Liu YJ, Lian YS (2006) Analysis of the genetic diversity and relationships among and within species of Hippophae (Elaeagnaceae) based on RAPD markers. Plant Syst Evol 260:25–37

    Article  CAS  Google Scholar 

  • Sun K, Chen X, Ma R, Li C, Wang Q, Ge S (2002) Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Plant Syst Evol 235:121–134

    Article  CAS  Google Scholar 

  • Sun K, Chen W, Ma RJ, Chen XL, Li A, Ge S (2006) Genetic variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) revealed by RAPD markers. Biochem Genet 44:186–197

    Article  PubMed  CAS  Google Scholar 

  • Swenson U, Bartish IV (2003) Taxonomic synopsis of Hippophae (Elaeagnaceae). Nordic J Bot 22:369–374

    Article  Google Scholar 

  • Tang X, Tigerstedt PMA (2001) Variation of physical and chemical characters within an elite sea buckthorn (Hippophae rhamnoides L.) breeding population. Sci Horitic 88:203–214

    Article  CAS  Google Scholar 

  • Tian LC, Guan FL, Zhang MY (1993) The preliminary study of flowering features in Hippophae rhamnoides L. ssp. sinensis Rousi and artificial hybridization. Hippophae 6:29–33

    Google Scholar 

  • Tian C, Lei Y, Shi S, Nan P, Chen J, Zhong Y (2004a) Genetic diversity of sea buckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New For 27:229–237

    Article  Google Scholar 

  • Tian C, Nan P, Shi S, Chen J, Zhong Y (2004b) Molecular genetic variation in Chinese populations of three subspecies of Hippophae rhamnoides. Biochem Genet 42:259–267

    Article  PubMed  CAS  Google Scholar 

  • Wang ZK, Guo BP, Yan LY (1989) Study on features of pollen dispersal of sea buckthorn in mountains. In: Proceedings of International Symposium on Sea Buckthorn, Beijing, pp 186–189

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1969) Evolution and genetics of populations, vol 2. The theory of gene frequencies. University of Chicago Press, Chicago

    Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, vol 4. Variability within and among populations. University of Chicago Press, Chicago

    Google Scholar 

  • Yang Y, Yao Y, He H (2008) Influence of ambient and enhanced ultraviolet-B radiation on the plant growth and physiological properties in two contrasting populations of Hippophae rhamnoides. J Plant Res 121:377–385

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Tigerstedt PMA (1993) Isozyme studies of genetic diversity and evolution in Hippophae. Genet Resour Crop Evol 40:153–164

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1997) POPGENE (version 1.32): software Microsoft Windows-based freeware for population genetic analysis. University of Alberta, Canada

    Google Scholar 

  • Zhao H, Zhu C, Gao C, Li H, Liu Z, Sun W (1991) Geographical variation of fruit traits of the Chinese sea buckthorn and selection of provenances for fruit use. Hippophae 4:15–18

    Google Scholar 

Download references

Acknowledgments

The research was supported by the Program of “Knowledge Innovation Engineering” of the Chinese Academy of Sciences (no. KSCX2-YW-Z-1019) and the Program of “the Light Foundation” of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Jiang, H., Peng, S. et al. Genetic structure in fragmented populations of Hippophae rhamnoides ssp. sinensis in China investigated by ISSR and cpSSR markers. Plant Syst Evol 295, 97–107 (2011). https://doi.org/10.1007/s00606-011-0466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0466-7

Keywords

Navigation