Skip to main content
Log in

Population Genetic Diversity and Structure of Parrotia persica C.A. Mey. (Hamamelidaceae), a Relict Tree in Iran

  • Research
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Parrotia persica (Hamamelidaceae) is a relict tree species restricted to the Hyrcanian district of Iran and Azerbaijan. Parrotia had a wide Eurasian distribution before the Pleistocene glaciations and the western Eurasian P. persica diverged from its East Asian sister species P. subaequalis during the Miocene. We investigated infraspecific genetic diversity and structure in 10 populations of P. persica using SCoT molecular markers. We determined a significant genetic diversity in the genomic DNA using AMOVA, which mainly to diversity among populations. Moreover, high levels of genetic differentiation (Gst), total genetic variation (Ht), and a low rate of gene flow were recorded between populations. In some populations, high levels of genetic polymorphism resulted from frequent mutations in their members. The Mantel test showed a significant correlation between genetic diversity and geographic distance. We found three genotype groups among the populations using STRUCTURE and clustering analyses. These genotypes did not conform to specific distribution patterns. Our results indicated that fragmented and small-sized populations, a flat rate of gene flow, a low rate of mutations, and the breeding system in Parrotia led to high levels of population differentiation along with a nearly uniform genetic structure in most populations. Three main diversity centers exist for Parrotia in Hyrcanian forests, which are of importance for conservation strategies. A comparison with previously published population genetic patterns in Hyrcanian relict tree species (Zelkova Spach and Pterocarya Nutt . ex Moq .) suggests that these have different genetic structures with higher rates of gene flow between populations. The detected genotypes can be used to generate new genotypes by cross pollination, and also they can cultivate as avenue trees and parks in urban areas around each genotype to conserve biodiversity in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adroit B, Zhuang X, Wappler T, Terral JF, Wang B (2020) A case of long-term herbivory: specialized feeding trace on Parrotia (Hamamelidaceae) plant species. R Soc Open Sci 7:201449. https://doi.org/10.1098/rsos.201449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahanjan M, Raghavendra MP, Raveesha KA (2020) A novel antifungal phenolic compound from Parrotia persica. Int J Anat Physiol 9(4):1–7

    CAS  Google Scholar 

  • Alikhani L, Rahmani MS, Shabanian N, Badakhshan H, Khadivi-Khub A (2014) Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene 552:176–183

    Article  CAS  PubMed  Google Scholar 

  • Alipour S, Yousefzadeh H, Badehian Z, Asadi F, Espahbodi K, Dering M (2021) Genetic diversity and structure of the endemic and critically endangered Populus caspica in the Hyrcanian forests. Tree Genet Genomes 17:19. https://doi.org/10.1007/s11295-021-01497-9

    Article  CAS  Google Scholar 

  • Andrews S (2007) Tree of the year: Parrotia. Int Dendrol Soc Year Book 2007:6–37

    Google Scholar 

  • Bińka K, Nitychoruk J, Dzierżek J (2003) Parrotia persica C.A.M. (Persian witch-hazel, Persian Ironwood) in the Mazovian (Holsteinian) Interglacial of Poland. Grana 42:227–233

    Article  Google Scholar 

  • Borcard D, Legendre P (2012) Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology 93:1473–1481

    Article  PubMed  Google Scholar 

  • Buer H, Rula S, Wang ZY, Fang S, Bai Y (2022) Analysis of genetic diversity in Prunus sibirica L. in inner Mongolia using SCoT molecular markers. Genet Resour Crop Evol 69:1057–1068. https://doi.org/10.1007/s10722-021-01284-4

    Article  Google Scholar 

  • Cardoni S, Piredda R, Denk T, Grimm GW, Papageorgiou AC, Schulze ED, Scoppola A, Shanjani PS, Suyama Y, Tomaru N, Worth JRP, Simeone MC (2022) 5S-IGS rDNA in wind-pollinated trees (Fagus L.) encapsulates 55 million years of reticulate evolution and hybrid origins of modern species. Plant J 109:909–926. https://doi.org/10.1111/tpj.15601

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Cobo-Simón I, Méndez-Cea B, Jump A, Seco J, Gallego F, Linares J.C (2020) Understanding genetic diversity of relict forests. Linking long-term isolation legacies and current habitat fragmentation in Abies pinsapo Boiss. For Ecol Manag 461: 117947. DOI:https://doi.org/10.1016/j.foreco.2020.117947

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86. https://doi.org/10.1007/s11105-008-0060-5

    Article  CAS  Google Scholar 

  • Dagtekin D, Şahan EA, Denk T, Köse N, Dalfes HN (2020) Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PLoS One 15(11):e0242280. https://doi.org/10.1371/journal.pone.0242280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denk T, Grimm GW (2005) Phylogeny and biogeography of Zelkova (Ulmaceae sensu stricto) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot J Linn Soc 147:129–157

    Article  Google Scholar 

  • Denk T, Sami M, Teodoridis V, Martinetto E (2022) The late Early Pleistocene flora of Oriolo, Faenza (Italy): assembly of the modern forest biome. Foss Impr 78(1):1–42

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Gerber AS, Templeton AR (1996) Population sizes and within-deme movement of Trimerotropis saxatilis (Acrididae), a grasshopper with a fragmented distribution. Oecologia 105:343–350

    Article  PubMed  Google Scholar 

  • Gilman EF, Watson DG (1994) Parrotia persica, Persian Parrotia. Fact Sheet ST-432, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service. Institute of Food and Agricultural Sciences, University of Florida

    Google Scholar 

  • Gómez-Zurita J, Petitpierre E, Juan C (2000) Nested cladistics analysis, phylogeography and speciation in the Timarcha goettingensis complex (Coleoptera, Chrysomelidae). Mol Ecol 9:557–570

    Article  PubMed  Google Scholar 

  • Goswami B, Rankawat R, Regie WD, Gadi BR, Rao SR (2020) Genetic diversity, population structure and gene flow pattern among populations of Lasiurus sindicus Henr. - an endemic, C4 grass of Indian Thar desert. Plant. Gene 21:100206

    Google Scholar 

  • Grímsson F, Meller B, Bouchal JM, Zetter R (2015) Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: part III. Magnoliophyta 1 – Magnoliales to Fabales. Grana 54:85–128

    Article  Google Scholar 

  • Guan C, Chachar S, Zhang P, Hu C, Wang R, Yang Y (2020) Inter- and intra-specific genetic diversity in Diospyros using SCoT and IRAP markers. Horticult Plant J 6:71–80. https://doi.org/10.1016/j.hpj.2019.12.005

    Article  Google Scholar 

  • Guo DL, Zhang JY, Liu CH (2012) Genetic diversity in some grape varieties revealed by SCoT analyses. Mol Biol Rep 39:5307–5313

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Jiao K, Yu C, Guo H, Zhu Y, Yang X, Zhang S, Zhang L, Feng S, Song Y, Dong M, Wang H, Shen C (2018) Development of SCoT-based SCAR marker for rapid authentication of Taxus media. Biochem Genet 56:255–266

    Article  CAS  PubMed  Google Scholar 

  • Hensen KC, Wagner V, Durka W, Pusch J, Wesche K (2010) Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. in Central Europe. Plant Biol 12:526–536

    Article  CAS  PubMed  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Janfaza S, Yousefzadeh H, Hosseini Nasr SM, Botta R, Asadi Abkenar A, Marinoni DT (2017) Genetic diversity of Castanea sativa an endangered species in the Hyrcanian forest. Silva Fenn 51:1705. https://doi.org/10.14214/sf.1705

    Article  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x

    Article  PubMed  Google Scholar 

  • Karimi R, Ershadi A, Vahdati K, Woeste K (2010) Molecular characterization of Persian walnut populations in Iran with microsatellite markers. HortScience 45:1403–1406

    Article  Google Scholar 

  • Khadivi-Khub A, Shabanian N, Alikhani L, Rahmani MS (2015) Genotypic analysis and population structure of Lebanon oak (Quercus libani G. Olivier) with molecular markers. Tree Genet Genomes 11:1–10

    Article  Google Scholar 

  • Kvaček Z, Teodoridis V, Denk T (2020) The Pliocene flora of Frankfurt am Main, Germany: taxonomy, palaeoenvironments and biogeographic affinities. Paleobiodivers Paleoenviron 100:647–703

    Article  Google Scholar 

  • Kwiecińska-Poppe E, Haliniarz M, Sowa S, Paczos-Grzęda E (2022) Genetic diversity and population structure of endangered plant species Anagallis foemina Mill. [Lysimachia foemina (Mill.) U. Manns & Anderb.]. Physiol Mol Biol Plants 26(8):1675–1683

    Article  Google Scholar 

  • Li H, Wang Y, Iqbal R (2021) SCoT molecular markers and population differentiation in Hedera helix L. Genetika 53:739–756

    Article  Google Scholar 

  • Li J, Del Tredici P (2008) The Chinese Parrotia: a sibling species of the Persian Parrotia. Arnoldia 66:2–9

    Google Scholar 

  • Luo C, He X, Chen H, Ou S, Gao M (2010) Analysis of diversity and relationships among mango cultivars using start codon targeted (SCoT) markers. Biochem Syst Ecol 38:1176–1184

    Article  CAS  Google Scholar 

  • Maharramova E, Huseynova I, Kolbaia S, Gruenstaeudl M, Borsch T, Muller LAH (2018) Phylogeography and population genetics of the riparian relict tree Pterocarya fraxinifolia (Juglandaceae) in the South Caucasus. Syst Biodivers 16:14–27

    Article  Google Scholar 

  • Maharramova EH, Safarov HM, Kozlowski G, Borsch T, Muller LAH (2015) Analysis of nuclear microsatellites reveals limited differentiation between Colchic and Hyrcanian populations of the wind-pollinated relict tree Zelkova carpinifolia (Ulmaceae). Am J Bot 102:119–128

    Article  PubMed  Google Scholar 

  • Mai HD (1995) Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Stuttgart

    Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol notes 4:792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  • Motahari B, Shabanian N, Rahmani MS, Mohammad-Hasani F (2021) Genetic diversity and genetic structure of Acer monspessulanum L. across Zagros forests of Iran using molecular markers. Gene 769:145245

    Article  CAS  PubMed  Google Scholar 

  • Nouri A, Golabadi M, Etminan A, Rezaei A, Mehrabi AA (2021) Comparative assessment of SCoT and ISSR markers for analysis of genetic diversity and population structure in some Aegilops tauschii Coss. accessions. Plant Genet Resou 19:375–383. https://doi.org/10.1017/S147926212100040X

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6. https://doi.org/10.1186/1746-4811-9-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo A, Lareu MV (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Front Genet 4:98. https://doi.org/10.3389/fgene.2013.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani MS, Alikhani L, Shabanian N, Khadivi-Khub A (2015) Genetic differentiation in Quercus infectoria from northwest of Iran revealed by different nuclear markers. Tree Genet Genomes 11:1–9

    Article  Google Scholar 

  • Rehm EM, Olivas P, Stroud J, Feeley KJ (2015) Losing your edge: climate change and the conservation value of range-edge populations. Ecol Evol 5:4315–4326. https://doi.org/10.1002/ece3.1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Saboor IS, Noormohammadi Z, Sheidai M, Marashi SS (2020) SCoT molecular markers and genetic fingerprinting of date palm (Phoenix dactylifera L.) cultivars. Genet Resour Crop Evol 67:73–82

    Article  Google Scholar 

  • Sboeva Y, Chertov N, Nechaeva Y, Valeeva A, Boronnikova S, Kalendar R (2022) Genetic diversity, structure, and differentiation of Pinus sylvestris L. populations in the East European Plain and the Middle Urals. Forests 13:1798. https://doi.org/10.3390/f13111798

    Article  Google Scholar 

  • Scalfi M, Piotti A, Rossi M, Piovani P (2009) Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: the rear edge of the range. Europ J Forest Res 128:377–386

    Article  CAS  Google Scholar 

  • Schiebold S, Hensen I, Wesche K, Röser M (2009) Extensive clonality of the endemic Calamagrostis pseudopurpurea ex O.R. Heine in Central Germany revealed by RAPD markers. Plant Biol 11:473–482

    Article  CAS  PubMed  Google Scholar 

  • Sefidi K, Marvie Mohadjer MR, Etemad V, Copenheaver CA (2011) Stand characteristics and distribution of a relict population of Persian ironwood (Parrotia persica C.A. Meyer) in northern Iran. Flora 206:418–422. https://doi.org/10.1016/j.flora.2010.11.005

    Article  Google Scholar 

  • Shanjani PS, Vendramin GG, Calagari M (2011) Altitudinal genetic variations among the Fagus orientalis Lipsky populations in Iran. Iran J Biotechnol 9:11–20

    Google Scholar 

  • Shariatnegad S (2005) Global forest resources assessment country reports: Islamic Republic of Iran. FAO (Food and Agriculture Organization of the United Nations), Rome, p 41

    Google Scholar 

  • Sheidai M, Afshar F, Keshavarzi M, Talebi SM, Noormohammadi Z, Shafaf T (2014) Genetic diversity and genome size variability in Linum austriacum (Linaceae) populations. Biochem Syst Ecol 57:20–26

    Article  CAS  Google Scholar 

  • Sun GL, Dıaz O, Salomon B, von Bothmer R (2001) Genetic diversity and structure in a natural Elymus caninus population from Denmark based on microsatellite and isozyme analyses. Plant Syst Evol 227:235–244

    Article  CAS  Google Scholar 

  • Svenning JC (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol Lett 6:646–653

    Article  Google Scholar 

  • Szabo K, Pamfil D, Bâdârâu AS, Hârta M (2021) Assessment of genetic diversity and population structure of the endangered Astragalus exscapus subsp. transsilvanicus through DNA-based molecular markers. Plants 10:2732. https://doi.org/10.3390/plants10122732

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabasi M, Sheidai M, Hassani D, Koohdar F (2020) DNA fingerprinting and genetic diversity analysis with SCoT markers of Persian walnut populations (Juglans regia L.) in Iran. Gen Resour Crop Evol 67:1437–1447

    Article  CAS  Google Scholar 

  • Talebi SM, Arianejad F, Tabaripour R, Mahdiyeh M (2022a) Morphology and genetic diversity of Marrubium cuneatum Russell and M. parviflorum Fisch. & C.A. Mey. Genet Resour Crop Evol:1–17. https://doi.org/10.1007/s10722-022-01358-x

  • Talebi SM, Askary M, Samiei-Rad M, Tabaripour R, Matsyura A (2022b) Do we have infraspecific taxa of Salvia macrosiphon Boiss. (Lamiaceae) in Iran? Mol Biol Rep 49:1181–1189. https://doi.org/10.1007/s11033-021-06946-1

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289. https://doi.org/10.1007/BF00877430

    Article  Google Scholar 

  • Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5:735–745

    Article  CAS  PubMed  Google Scholar 

  • Urbaniak J, Kwiatkowski P, Pawlikowski P (2021) Genetic diversity of Salix lapponum populations in Central Europe. PhytoKeys 184:83–101. https://doi.org/10.3897/phytokeys.184.71641

    Article  PubMed  PubMed Central  Google Scholar 

  • Urbaniak J, Kwiatkowski P, Ronikier M (2018) Postglacial history and current population genetic diversity of a central- European forest plant Hacquetia epipactis. Preslia 90:39–57. https://doi.org/10.23855/preslia.2018.039

    Article  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Wendelbo P (1968) Hamamelidaceae no. 53. In: Rechinger KH (ed) Flora Iranica. Akad Druck Verlagsanst Graz, p 3

    Google Scholar 

  • Yilmaz A, Ciftci V (2021) Genetic relationships and diversity analysis in Turkish laurel (Laurus nobilis L.) germplasm using ISSR and SCoT markers. Mol Biol Rep 48:4537–4547

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof Thomas Denk for generously giving advice and correcting the manuscript. We thank also Hossein Rajani for taking picture of P. persica in Hyrcanian forests of Iran.

Availability of Data and Material

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

S.M.T.: wrote the main manuscript; H.H.: performed the experiments; R.T.: provided some samples, analyzed the data, and reviewed the manuscript.

Corresponding author

Correspondence to Raheleh Tabaripour.

Ethics declarations

Research Involving Humans and Animals

This work does not involve living animals and no consent is needed.

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

Population genetic diversity and structure of Parrotia persica were revealed by Start Codon Targeted (SCoT) molecular markers. Our findings will aid in the development of forest management programs to protect this iconic tree species and its habitat.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, S.M., Hatami, H. & Tabaripour, R. Population Genetic Diversity and Structure of Parrotia persica C.A. Mey. (Hamamelidaceae), a Relict Tree in Iran. Plant Mol Biol Rep 41, 622–635 (2023). https://doi.org/10.1007/s11105-023-01386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-023-01386-6

Keywords

Navigation