Skip to main content
Log in

Inter- and intraspecific genetic variation inHippophae (Elaeagnaceae) investigated by RAPD markers

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Genetic diversity has been investigated by the application of molecular markers in, for the first time, all the taxa recognised in recent treatises of the genusHippophae. RAPD (random amplified polymorphic DNA) analyses were conducted with 9 decamer primers, which together yielded 219 polymorphic markers. We found 16 fixed RAPD markers, i.e. markers that either occurred in all plants of a population or were absent from all plants. Several of these markers were useful for analysis of interspecific relationships, whereas others can be considered as taxon-specific markers. Clustering of taxa and populations in our neighbour-joining based dendrogram was in good agreement with some recently suggested taxonomic treatises ofHippophae. Amount and distribution of genetic variability varied considerably between species. Partitioning of molecular variance withinH. rhamnoides supported earlier findings that a considerable part of the total variance resides among subspecies (59.6%) Within-population variability also differed considerably. Percentage polymorphic RAPD loci and Lynch and Milligan within-population gene diversity estimates showed relatively high values for some species close to the geographic centre of origin in Central Asia, e.g.H. tibetana and the putatively hybridogenousH. goniocarpa. Spatial autocorrelation analyses performed on 12 populations ofH. rhamnoides revealed positive autocorrelation of allele frequencies when geographic distances ranged from 0 to 700 km, and no or negative autocorrelation at higher distances. At distances between 700 and 1900 km, we observed deviations from the expected values with strongly negative autocorrelation of allele frequencies. A corresponding relationship between geographic and genetic distances could not be found when the analysis instead was based on one population from each of 8 species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avdeyev V. I. (1983) Novaya taksonomiya roda obleipikha —Hippophae L. Izv. Akad. Nauk Tadzh. S.S.R. 4(93): 11–17.

    Google Scholar 

  • Bartish I. V., Jeppsson N., Nybom H. (1999a) Population genetic structure in the dioecious pioneer plant speciesHippophae rhamnoides investigated by RAPD markers. Molec. Ecol. 8: 791–802.

    Google Scholar 

  • Bartish I. V., Rumpunen K., Nybom H. (1999b) Genetic diversity inChaenomeles (Rosaceae) revealed by RAPD analysis. Plant Syst. Evol. 214: 131–145.

    Google Scholar 

  • Bartish I. V., Jeppsson N. (2000) Application of molecular markers to study systematics, phylogeny, biogeography, genetic diversity and population genetics ofHippophae L. In: Kallio H., Lu R., Shchapov N. S., Singh V., Skuridin G. M., Yeliseev I. P. (eds.) Seabuckthorn (Hippophae L.). A Multipurpose Plant. Oxford and IBH, New Delhi and New York (in press).

    Google Scholar 

  • Bartish I. V., Garkava L. P., Rumpunen K., Nybom H. (2000) Phylogenetic relationships and differentiation among and within populations ofChaenomeles Lindl. (Rosaceae), estimated with molecular markers. Theor. Appl. Genet. 101: 554–563.

    Google Scholar 

  • Burmistrov L. A. (1995) Genetic resources and breeding potential of sea buckthorn (Hippophae rhamnoides) in Russia. WANATCA Yearbook 19: 9–13.

    Google Scholar 

  • Comes H. P., Abbott R. J. (2000) Random amplified polymorphic DNA (RAPD) and quantitative trait analyses across a major phylogeographical break in the Mediterranean ragwortSenecio gallicus Vill. (Asteraceae). Molec. Ecol. 9: 61–76.

    Google Scholar 

  • Dawson I. K., Simons A. J., Waugh R., Powell W. (1995) Diversity and genetic differentiation among subpopulations ofGliricidia sepium revealed by PCR-based assays. Heredity 74: 10–18.

    Google Scholar 

  • Excoffier L., Smouse P. E., Quattro J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    Google Scholar 

  • Felsenstein J. (1993) PHYLIP (Phylogeny inference package) version 3.5c. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Huff D. R., Peakall R., Smouse P. E. (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Theor. Appl. Genet. 86: 927–934.

    Google Scholar 

  • Hyvönen J. (1996) On the phylogeny ofHippophae (Elaeagnaceae). Nord. J. Bot. 16: 51–62.

    Google Scholar 

  • Kalinina I. P., Panteleyeva Y. I. (1987) Breeding of sea buckthorn in the Altai. In: Kryukov A. B. (ed.) Advances in agricultural science. Moscow, Russia, pp. 76–87.

  • Kirvan A. P. (1997) Latitude/Longitude, NCGIA Core Curriculum in GI Science, http://www.ncgia.ucsb.edu/giscc/units/u014/u014.html, posted October 29, 1997.

  • Le Corre V., Dumolin-Lapegue S., Kremer A. (1997) Genetic variation at allozyme and RAPD loci in sessile oakQuercus petraea (Matt.) Liebl.: the role of history and geography. Molec. Ecol. 6: 519–529.

    Google Scholar 

  • Li T. S. C., Schroeder W. R. (1996) Sea buckthorn (Hippophae rhamnoides L.): A multipurpose plant. HortTechnology 6: 370–380.

    Google Scholar 

  • Lian Y., Chen X. (1993) Study on the germplasm resource of the genusHippophae L. International Symposium on sea buckthorn (Hippophae rhamnoides L.), August 23–25 1993. Novosibirsk, Russia, pp. 157–161.

  • Lian Y., Chen X., Sun K. (1995) New discoveries of the genusHippophae L. Proceedings of International Workshop on Seabuckthorn. China Science and Technology Press, Beijing, pp. 60–66.

    Google Scholar 

  • Lian Y., Chen X., Lian H. (1998) Systematic classification of the genusHippophae L. Seabuckthorn Research 1: 13–23.

    Google Scholar 

  • Liu S. W., He T. N. (1978) The genusHippophae from Qing-Zang plateau. Acta Phytotax. Sin. 16: 106–108 (in Chinese).

    Google Scholar 

  • Liu Z., Furnier G. R. (1993) Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor. Appl. Genet. 87: 97–105.

    Google Scholar 

  • Lu R. (1992) Seabuckthorn: A multipurpose plant species for fragile mountains. ICIMOD Publication Unit, Katmandu.

    Google Scholar 

  • Lynch M., Milligan B. G. (1994) Analysis of population genetic structure with RAPD markers. Molec. Ecol. 3: 91–99.

    Google Scholar 

  • Nei M. (1972) Genetic distance between populations. Amer. Naturalist 106: 283–292.

    Google Scholar 

  • Persson H. A., Nybom H. (1998) Genetic sex determination and RAPD marker segregation in the dioecious species sea buckthorn (Hippophae rhamnoides L.). Hereditas 129: 45–51.

    Google Scholar 

  • Raybould A. F., Mogg R. J., Clarke R. T. (1996) The genetic structure ofBeta vulgaris ssp.maritima (sea beet) populations: RFLPs and isozymes show different pattern of gene flow. Heredity 77: 245–250.

    Google Scholar 

  • Reusch T. B. H., Stam W. T., Olsen J. L. (2000) A microsatellite-based estimation of clonal diversity and population subdivision inZostera marina, a marine flowering plant. Molec. Ecol. 9: 127–140.

    Google Scholar 

  • Rieseberg L. (1996) Homology among RAPD fragments in interspecific comparisons. Molec. Ecol. 5: 99–106.

    Google Scholar 

  • Rohlf F. J. (1997) NTSYS/pc. Numerical taxonomy and multivariate analysis system. Version 1.80. Exeter Software, Setauket, USA.

    Google Scholar 

  • Rousi A. (1965) Observations on the cytology and variation of European and Asiatic populations ofHippophae rhamnoides. Annales Botanici Fennici 2: 1–18.

    Google Scholar 

  • Rousi A. (1971) The genusHippophae L. A taxonomic study. Annales Botanici Fennici 8: 177–227.

    Google Scholar 

  • Sokal R. R., Oden N. L. (1978) Spatial autocorrelation in biology. I. Methodology. Biol. J. Linnean Soc. 10: 199–228.

    Google Scholar 

  • Trajkovski V., Jeppsson N. (1999) Domestication of sea buckthorn. Botanica Lithuanica, suppl. 2: 37–46.

    Google Scholar 

  • Vetters J. (1990) Sanddorn — eine Alternative und Perspektive für den Obstbau in der DDR. Gartenbau 37: 206–207.

    Google Scholar 

  • Wahlberg K. (1995) Possibilities for establishing commercial cultivation of sea buckthorn as a new crop in Sweden. Proceedings of International Workshop on Seabuckthorn. China Science and Technology Press, Beijing, pp. 23–27.

    Google Scholar 

  • Yao Y., Tigerstedt P. M. A. (1993) Isozyme studies of genetic diversity and evolution inHippophae. Genetic Res. Crop Evol. 40: 153–164.

    Google Scholar 

  • Yao Y., Tigerstedt P. M. A. (1994) Genetic diversity inHippophae L. and its use in plant breeding. Euphytica 77: 165–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartish, I.V., Jeppsson, N., Bartish, G.I. et al. Inter- and intraspecific genetic variation inHippophae (Elaeagnaceae) investigated by RAPD markers. Pl Syst Evol 225, 85–101 (2000). https://doi.org/10.1007/BF00985460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00985460

Key words

Navigation