Skip to main content
Log in

Chromosomal localization and evolution of satellite DNAs and heterochromatin in grasses (Poaceae), especially tribe Aveneae

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The physical mapping of three abundant tandemly repeated DNA sequences, CON1, CON2, and COM2, and the distributional pattern of AT- and GC-rich regions in the chromosomes of 32 species of the grass family Poaceae have been established by means of fluorescence in situ hybridization and fluorochrome banding with chromomycin and DAPI. Additionally, locations of 5S, 35S rDNA, and the C-banding pattern were examined. All satellite DNAs (satDNA) tested are situated predominantly subtelomerically in the chromosomes, but occur also colocalized with 35S and 5S ribosomal DNAs (rDNA). Especially, CON2 is most often colocalized with the 5S rDNA, but is evolutionarily not derived from it. Subtelomeric heterochromatin bands are frequently, but not always correlated with satDNA bands. Moreover, the DAPI- or rarely chromomycin-positive stainability of heterochromatin is not caused by these satDNAs as revealed by their sequence organization, showing too few clusters of AT or GC base pairs as required for binding of the fluorochromes. The occurrence of satDNAs is not correlated with that of other components of the heterochromatin. Proportions of satDNAs and other sequences of the heterochromatin relative to the entire genome appear subjected to a much faster evolutionary change than the rather stable proportions of the rDNAs. Heteromorphism in banding patterns found in many species is related in most instances with breeding system and life form. The independent evolution and amplification of different satDNAs is discussed in relation to molecular phylogenetic data. The value and limitations of satDNA data in addressing systematic questions in grasses is exemplified for several grass subfamilies and tribes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. Alix F.-C. Baurens F. Paulet J.-C. Glaszmann A. D'Hont (1998) ArticleTitleIsolation and characterization of a satellite DNA family in the Saccharum complex Genome 41 854–864 Occurrence Handle9924794 Occurrence Handle10.1139/gen-41-6-854 Occurrence Handle1:CAS:528:DyaK1MXotValug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • K. Anamthawat-Jónsson J. S. Heslop-Harrison (1993) ArticleTitleIsolation and characterization of genome-specific DNA sequences in Triticeae species Molec. Gen. Genet. 240 151–158 Occurrence Handle8355649 Occurrence Handle10.1007/BF00277052

    Article  PubMed  Google Scholar 

  • R. Appels W. L. Gerlach E. S. Dennis H. Swift W. J. Peacock (1980) ArticleTitleMolecular and chromosomal organization of DNA sequences coding for ribosomal RNAs in cereals Chromosoma 78 293–311 Occurrence Handle10.1007/BF00327389 Occurrence Handle1:CAS:528:DyaL3cXks1KgtLo%3D

    Article  CAS  Google Scholar 

  • R. Appels R. L. Honeycutt (1986) rDNA: evolution over a billion years S. K. Dutta (Eds) DNA systematics, II Plant DNA CRC Press Boca Raton 81–125

    Google Scholar 

  • E. D. Badaeva B. Friebe B. S. Gill (1996) ArticleTitleGenome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species Genome 39 293–306 Occurrence Handle1:CAS:528:DyaK28XjtVyjtbs%3D Occurrence Handle18469894

    CAS  PubMed  Google Scholar 

  • M. Barow A. Meister (2002) ArticleTitleLack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding Cytometry 47 1–7 Occurrence Handle11774343 Occurrence Handle10.1002/cyto.10030 Occurrence Handle1:CAS:528:DC%2BD38XnsV2htQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • J. R. Bedbrook J. Jones M. O'Dell R. D. Thompson R. B. Flavell (1980) ArticleTitleMolecular description of telomeric heterochromatin in Secale species Cell 19 545–560 Occurrence Handle6244112 Occurrence Handle10.1016/0092-8674(80)90529-2 Occurrence Handle1:CAS:528:DyaL3cXhsVentr8%3D

    Article  PubMed  CAS  Google Scholar 

  • B. Belyayev O. Raskina (1998) ArticleTitleHeterochomatin discrimination in Aegilops speltoides by simultaneous genomic in situ hybridization Chrom. Res. 6 559–565 Occurrence Handle9886775 Occurrence Handle10.1023/A:1009292726034 Occurrence Handle1:CAS:528:DyaK1MXisVygtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • M. D. Bennett J. B. Smith J. S. Heslop-Harrison (1982) ArticleTitleNuclear DNA amounts in angiosperms Proc. Roy. Soc. London, Ser. B, Biol. Sci. 216 179–199 Occurrence Handle1:CAS:528:DyaL38Xlslylu70%3D Occurrence Handle10.1098/rspb.1982.0069

    Article  CAS  Google Scholar 

  • W. Y. Cheung T. A. Money S. Abbo K. M. Devos M. D. Gale G. Moore (1994) ArticleTitleA family of related sequences associated with (TTTAGGG)n repeats are located in the interstitial regions of wheat chromosomes Molec. Gen. Genet. 245 349–354 Occurrence Handle7816045 Occurrence Handle10.1007/BF00290115 Occurrence Handle1:CAS:528:DyaK2MXjvFChsrk%3D

    Article  PubMed  CAS  Google Scholar 

  • A. Csink S. Henikoff (1998) ArticleTitleSomething from nothing: the evolution and utility of satellite repeats Trends Genet. 14 200–204 Occurrence Handle9613205 Occurrence Handle10.1016/S0168-9525(98)01444-9 Occurrence Handle1:CAS:528:DyaK1cXjt1agurY%3D

    Article  PubMed  CAS  Google Scholar 

  • `Chromomycin Facts Sheet': http://chromomycin.4mg.com/

  • F. Cremisi R. Vignali R. Batisioni G. Barsacchi (1988) ArticleTitleHeterochromatic DNA in Triturus (Amphibia, Urodela). II. A centromeric satellite DNA Chromosoma 97 204–211 Occurrence Handle3219917 Occurrence Handle10.1007/BF00292962 Occurrence Handle1:CAS:528:DyaL1MXhtV2htb0%3D

    Article  PubMed  CAS  Google Scholar 

  • A. Cuadrado N. Jouve (1995) ArticleTitleFluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequence in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments Genome 38 795–802 Occurrence Handle7672610 Occurrence Handle1:CAS:528:DyaK2MXosFerurk%3D

    PubMed  CAS  Google Scholar 

  • C. Dean R. Schmidt (1995) ArticleTitlePlant genomes: a current molecular description Annual Rev. Pl. Physiol. Pl. Molec. Biol. 46 395–418 Occurrence Handle10.1146/annurev.pp.46.060195.002143 Occurrence Handle1:CAS:528:DyaK2MXmsVCqtbc%3D

    Article  CAS  Google Scholar 

  • M. J. Jeu ParticleDe J. Lasschuit A. G. J. Kuipers S. A. Kamstra R. G. F. Visser (1997) ArticleTitleCharacterization and localization of repetitive DNA sequences in the ornamental Alstromeria aurea Graham Theor. Appl. Genet. 94 982–990 Occurrence Handle10.1007/s001220050505

    Article  Google Scholar 

  • B. Deumling J. Greilhuber (1982) ArticleTitleCharacterization of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding Chromosoma 84 535–555 Occurrence Handle10.1007/BF00292854 Occurrence Handle1:CAS:528:DyaL38XhslGhuro%3D

    Article  CAS  Google Scholar 

  • F. Dong J. T. Miller S. A. Jackson G. L. Wang P. C. Ronald J. M. Jiang (1998) ArticleTitleRice (Oryza sativa) centromeric regions consist of complex DNA Proc. Natl. Acad. Sci. U.S.A. 95 8135–8140 Occurrence Handle9653153 Occurrence Handle10.1073/pnas.95.14.8135 Occurrence Handle1:CAS:528:DyaK1cXks1Wisr4%3D

    Article  PubMed  CAS  Google Scholar 

  • G. A. Dover D. Tautz (1986) ArticleTitleConservation and divergence in multigene families: alternatives to selection and drift Philos. Trans. Roy. Soc. Lond., Ser. B, 321 275–289

    Google Scholar 

  • Döring E., Albrecht J., Hilu K. W., Röser M. (2006) Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae). Kew Bull (in press).

  • T. Endo B. S. Gill (1984) ArticleTitleThe heterochromatin distribution and genome evolution in diploid species of Elymus and Agropyron Canad. J. Genet. Cytol. 26 669–678

    Google Scholar 

  • R. B. Flavell (1980) ArticleTitleThe molecular characterization and organization of plant chromosomal DNA sequences Annual Rev. Pl. Physiol. 31 569–596 Occurrence Handle10.1146/annurev.pp.31.060180.003033 Occurrence Handle1:CAS:528:DyaL3cXksVWntbk%3D

    Article  CAS  Google Scholar 

  • R. B. Flavell M. Gale M. O'Dell G. Murphy G. Moore H. Lucas (1993) ArticleTitleMolecular organization of genes and repeats in the large cereal genomes and implications for the isolation of genes by chromosome walking Chromosomes Today 11 199–214 Occurrence Handle1:CAS:528:DyaK2MXisFWnsA%3D%3D

    CAS  Google Scholar 

  • J. Fuchs U. Pich A. Meister I. Schubert (1994) ArticleTitleDifferentiation of field bean heterochromatin by in situ hybridization with repeated FokI sequence Chromosome Res. 2 25–28 Occurrence Handle8162317 Occurrence Handle10.1007/BF01539450 Occurrence Handle1:STN:280:DyaK2c3hsVygtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • M. W. Ganal N. L. V. Lapitan S. D. Tanksley (1988) ArticleTitleA molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum) Molec. Gen. Genet. 213 262–268 Occurrence Handle10.1007/BF00339590 Occurrence Handle1:CAS:528:DyaL1cXmtVGqu7w%3D

    Article  CAS  Google Scholar 

  • R. García-Suárez C. Alonso-Blanco M. C. Fernandez-Carvajal J. A. Fernandez-Prieto A. Roca R. Giraldez (1997) ArticleTitleDiversity and systematics of Deschampsia sensu lato (Poaceae) inferred from karyotypes, protein electrophoresis, total genomic DNA hybridization and chloroplast DNA analysis Pl. Syst. Evol. 205 99–110 Occurrence Handle10.1007/BF00982800

    Article  Google Scholar 

  • A. Georgiou S. Karatagilis D. Raupakias (1992) ArticleTitleInter- and intraplant C-banding polymorphism in one population of Aegilops comosa var. comosa (Poaceae) Pl. Syst. Evol. 180 105–114 Occurrence Handle10.1007/BF00940400

    Article  Google Scholar 

  • C. Gervais (1973) ArticleTitleContribution à l'étude cytologique et taxonomique des avoines vivaces Denkschr. Schweiz. Naturf. Ges. 88 1–166

    Google Scholar 

  • C. Gervais (1983) ArticleTitleWide hybridization attempts in the tribe Aveneae Nees Ber. Schweiz. Bot. Ges. 93 195–212

    Google Scholar 

  • S. Granneman S. J. Baserga (2004) ArticleTitleRibosome biogenesis: of knobs and RNA processing Exp. Cell Res. 296 43–50 Occurrence Handle15120992 Occurrence Handle10.1016/j.yexcr.2004.03.016 Occurrence Handle1:CAS:528:DC%2BD2cXjs1Cju74%3D

    Article  PubMed  CAS  Google Scholar 

  • D. Graur W.-H. Li (2000) Fundamentals of molecular evolution. Ed. 2 Sinauer Sunderland

    Google Scholar 

  • B. Grebenstein O. Grebenstein W. Sauer V. Hemleben (1995) ArticleTitleCharacterization of a highly repeated DNA component of perennial oats (Helictotrichon, Poaceae) with sequence similarity to a A-genome-specific satellite DNA of rice (Oryza) Theor. Appl. Genet. 90 1101–1105 Occurrence Handle10.1007/BF00222928 Occurrence Handle1:CAS:528:DyaK2MXnsF2qsr0%3D

    Article  CAS  Google Scholar 

  • B. Grebenstein O. Grebenstein W. Sauer V. Hemleben (1996) ArticleTitleDistribution and complex organization of satellite DNA sequences in Aveneae species Genome 39 1045–1050 Occurrence Handle8983180 Occurrence Handle1:CAS:528:DyaK2sXlt1Srsw%3D%3D

    PubMed  CAS  Google Scholar 

  • B. Grebenstein M. Röser W. Sauer V. Hemleben (1998) ArticleTitleMolecular phylogenetic relationships in Aveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 rDNA sequences Pl. Syst. Evol. 213 133–150 Occurrence Handle10.1007/BF00985203

    Article  Google Scholar 

  • J. Greilhuber (1995) Chromosomes of the monocotyledons (general aspects) P. J. Rudall P. J. Cribb D. F. Cutler C. J. Humphries (Eds) Monocotyledons: systematics and evolution Royal Botanic Gardens Kew 379–414

    Google Scholar 

  • G. E. Harrison J. S. Heslop-Harrison (1995) ArticleTitleCentromeric repetitive DNA sequences in the genus Brassica Theor. Appl. Genet. 90 157–165 Occurrence Handle10.1007/BF00222197 Occurrence Handle1:CAS:528:DyaK2MXls1Cjsrc%3D

    Article  CAS  Google Scholar 

  • V. Hemleben (1993) ArticleTitleRepetitive and highly repetitive DNA components as molecular markers for evolutionary studies and in plant breeding Curr. Topics Molec. Genet. (Life Sci. Advances) 1 173–185

    Google Scholar 

  • K. W. Hilu L. A. Alice H. Liang (1999) ArticleTitlePhylogeny of Poaceae inferred from matK sequences Ann. Missouri Bot. Gard. 86 835–851 Occurrence Handle10.2307/2666171

    Article  Google Scholar 

  • Y. Hoshi W. Plaader S. Malepszy (1999) ArticleTitlePhysical mapping of 45S rRNA gene loci in the cucumber (Cucumis sativus L.) using fluorescence in situ hybridization Caryologia 52 49–57

    Google Scholar 

  • T. C. Hsu (1975) ArticleTitleA possible function of constitutive heterochromatin: the bodyguard hypothesis Genetics 79 137–150 Occurrence Handle1150080

    PubMed  Google Scholar 

  • K. Irifune K. Hirai J. Zheng R. Tanaka H. Morikawa (1995) ArticleTitleNucleotide sequence of a highly repeated DNA sequence and its chromosomal localization in Allium fistulosum Theor. Appl. Genet. 90 312–316 Occurrence Handle10.1007/BF00221970 Occurrence Handle1:CAS:528:DyaK2MXmtF2ls74%3D

    Article  CAS  Google Scholar 

  • S. W. L. Jacobs L. Lapinpuro (1986) ArticleTitleThe Australian species of Amphibromus (Poaceae) Telopea 2 715–729

    Google Scholar 

  • J. D. G. Jones R. B. Flavell (1982a) ArticleTitleThe mapping of highly repeated DNA families and their relationships to C-bands in chromosomes of Secale cereale Chromosoma 86 595–612 Occurrence Handle10.1007/BF00285606

    Article  Google Scholar 

  • J. D. G. Jones R. B. Flavell (1982b) ArticleTitleThe structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus Secale Chromosoma 86 613–641 Occurrence Handle10.1007/BF00285607 Occurrence Handle1:CAS:528:DyaL3sXltVGluw%3D%3D

    Article  CAS  Google Scholar 

  • G. Kahl (1995) Dictionary of gene technology VCH Weinheim

    Google Scholar 

  • M. Kimura (1980) ArticleTitleA simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences J. Molec. Evol. 16 111–120 Occurrence Handle7463489 Occurrence Handle10.1007/BF01731581 Occurrence Handle1:CAS:528:DyaL3MXmtFSktg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • S. Kubis T. Schmidt J. Seymour J. S. Heslop-Harrison (1998) ArticleTitleRepetitive DNA elements as a major component of plant genomes Ann. Bot. 82 IssueIDSuppl. A 45–55 Occurrence Handle10.1006/anbo.1998.0779 Occurrence Handle1:CAS:528:DyaK1MXkt1WksQ%3D%3D

    Article  CAS  Google Scholar 

  • A. G. J. Kuipers S. A. Kamstra M. J. Jeu Particlede R. G. F. Visser (2002) ArticleTitleMolecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species Chromosome Res. 10 389–398 Occurrence Handle12296521 Occurrence Handle10.1023/A:1016801702777 Occurrence Handle1:CAS:528:DC%2BD38XmtVWrsbg%3D

    Article  PubMed  CAS  Google Scholar 

  • N. L. Lapitan (1991) ArticleTitleOrganization and evolution of higher plant nuclear genomes Genome 35 171–181

    Google Scholar 

  • A. R. Leitch T. Schwarzacher D. Jackson I. J. Leitch (1994) In situ hybridization: a practical guide BIOS Scientific Publishers Oxford

    Google Scholar 

  • I. Linde-Laursen R. Bothmer Particlevon N. J. Jacobsen (1986) ArticleTitleGiemsa C-banded karyotypes of Hordeum taxa from North America Canad. J. Genet. Cytol. 28 42–62

    Google Scholar 

  • A. R. Lohe D. L. Brutlag (1987) ArticleTitleMultiplicity of satellite DNA sequence in Drosophila melanogaster Proc. Natl. Acad. Sci. U.S.A. 83 696–700 Occurrence Handle10.1073/pnas.83.3.696

    Article  Google Scholar 

  • J. Maluszynska J. S. Heslop-Harrison (1991) ArticleTitleLocalization of tandemly repeated DNA sequences in Arabidopsis thaliana Pl. J. 1 159–166 Occurrence Handle10.1111/j.1365-313X.1991.00159.x

    Article  Google Scholar 

  • J. Maluszynska J. S. Heslop-Harrison (1993) ArticleTitlePhysical mapping of rDNA loci in Brassica species Genome 36 774–781 Occurrence Handle1:CAS:528:DyaK2cXpsl2lug%3D%3D Occurrence Handle18470023

    CAS  PubMed  Google Scholar 

  • K. L. G. Morris B. S. Gill (1986) ArticleTitleGenomic affinities of individual chromosomes based on C-and N-banding analyses of tetraploid Elymus species and their diploid progenitor species Genome 29 247–252

    Google Scholar 

  • R. Nakamura S. Kitamura M. Inoue N. Ohmido K. Fukui (2001) ArticleTitleKaryotype analysis of Nicotiana kawakamii Y. Ohashi using DAPI banding and rDNA FISH Theor. Appl. Genet. 102 810–814 Occurrence Handle10.1007/s001220100577 Occurrence Handle1:CAS:528:DC%2BD3MXlt1SktLg%3D

    Article  CAS  Google Scholar 

  • M. L. Pardue J. G. Gall (1970) ArticleTitleChromosomal localization of mouse satellite DNA Science 168 1356–1358 Occurrence Handle5462793 Occurrence Handle10.1126/science.168.3937.1356 Occurrence Handle1:CAS:528:DyaE3cXksFemtbk%3D

    Article  PubMed  CAS  Google Scholar 

  • R. Rieger A. Michaelis M. M. Green (1991) Glossary of genetics. Ed. 5 Springer Berlin, Heidelberg, New York

    Google Scholar 

  • M. Röser G. Winterfeld B. Grebenstein V. Hemleben (2001) ArticleTitleMolecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae) Molec. Phylogenet. Evol. 21 198–217 Occurrence Handle11697916 Occurrence Handle10.1006/mpev.2001.1003 Occurrence Handle1:CAS:528:DC%2BD3MXotVynur4%3D

    Article  PubMed  CAS  Google Scholar 

  • R. Ross T. Hankeln E. R. Schmidt (1997) ArticleTitleComplex evolution of tandem-repetitive DNA in the Chironomus thummi species group J. Molec. Evol. 44 321–326 Occurrence Handle9060398 Occurrence Handle10.1007/PL00006149 Occurrence Handle1:CAS:528:DyaK2sXhs1Glu70%3D

    Article  PubMed  CAS  Google Scholar 

  • W. Salser S. Bowen D. Browne F. el-Adli N. Fedoroff K. Fry H. Heindell G. Paddock R. Poon B. Wallace P. Whitcome (1976) ArticleTitleInvestigation of the organization of mammalian chromosomes at the DNA sequence level Fed. Proc. 35 23–35 Occurrence Handle1107072 Occurrence Handle1:CAS:528:DyaE28XosFOktA%3D%3D

    PubMed  CAS  Google Scholar 

  • V. A. Saunders A. Houben (2001) ArticleTitleThe pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences Genome 44 955–961 Occurrence Handle11768222 Occurrence Handle10.1139/gen-44-6-955 Occurrence Handle1:CAS:528:DC%2BD38XjvVOiug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • T. Schmidt J. S. Heslop-Harrison (1998) ArticleTitleGenomes, genes and junk: the large-scale organization of plant chromosomes Trends Pl. Sci. 3 195–199 Occurrence Handle10.1016/S1360-1385(98)01223-0

    Article  Google Scholar 

  • T. Schwarzacher P. Ambros D. Schweizer (1980) ArticleTitleApplication of Giemsa banding to orchid karyotype analysis Pl. Syst. Evol. 134 293–297 Occurrence Handle10.1007/BF00986805

    Article  Google Scholar 

  • T. Schwarzacher A. R. Leitch M. D. Bennett J. S. Heslop-Harrison (1989) ArticleTitle In situ localization of parental genomes in a wide hybrid Ann. Bot. (Oxford) 64 315–324

    Google Scholar 

  • D. Schweizer (1976) ArticleTitleReverse fluorescent chromosome banding with chromomycin and DAPI Chromosoma 58 307–324 Occurrence Handle137107 Occurrence Handle10.1007/BF00292840 Occurrence Handle1:STN:280:DyaE2s%2FmvVWitQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • D. Schweizer P. F. Ambros (1994) Chromosome banding J. R. Gosden (Eds) Chromosome analysis protocols Humana Press Totowa, NJ 97–112 Occurrence Handle10.1385/0-89603-289-2:97

    Chapter  Google Scholar 

  • D. Schweizer J. Loidl (1987) ArticleTitleA model for heterochromatin dispersion and evolution of C-band patterns Chromosomes Today 9 61–74

    Google Scholar 

  • S. Siljak-Yakovlev S. Peccenini E. Muratovic V. Zoldos O. Robin J. Vallès (2003) ArticleTitleChromosomal differentiation and genome size in three European mountain Lilium species Pl. Syst. Evol. 236 165–173 Occurrence Handle10.1007/s00606-002-0240-y Occurrence Handle1:CAS:528:DC%2BD3sXht12isbg%3D

    Article  CAS  Google Scholar 

  • M. F. Singer (1982) ArticleTitleHighly repeated sequences in mammalian genomes Int. Rev. Cytol. 76 67–112 Occurrence Handle6749748 Occurrence Handle1:CAS:528:DyaL38XlslGqurs%3D Occurrence Handle10.1016/S0074-7696(08)61789-1

    Article  PubMed  CAS  Google Scholar 

  • G. P. Smith (1976) ArticleTitleEvolution of repeated DNA sequences by unequal crossover Science 191 528–535 Occurrence Handle1251186 Occurrence Handle10.1126/science.1251186 Occurrence Handle1:CAS:528:DyaE28Xhs1Srurg%3D

    Article  PubMed  CAS  Google Scholar 

  • W. Stephan (1986) ArticleTitleRecombination and the evolution of satellite DNA Genet. Res., Camb. 47 167–174 Occurrence Handle1:CAS:528:DyaL28Xlt1yrs7g%3D

    CAS  Google Scholar 

  • W. Stephan (1987) ArticleTitleQuantitative variation and chromosomal location of satellite DNAs Genet. Res. 50 41–52 Occurrence Handle3653688 Occurrence Handle1:CAS:528:DyaL1cXltFCgsQ%3D%3D Occurrence Handle10.1017/S0016672300023326

    Article  PubMed  CAS  Google Scholar 

  • A. T. Sumner (1990) Chromosome banding Unwin Hyman London

    Google Scholar 

  • D. Tautz (1993) Notes on the definition and nomenclature of tandemly repetitive DNA sequences S. D. J. Pena R. Chakraborty J. T. Epplen A. J. Jeffreys (Eds) DNA fingerprinting, state of the science Birkhäuser Basel 21–28

    Google Scholar 

  • R. A. Volkov F. J. Medina U. Zentgraf V. Hemleben (2004) ArticleTitleMolecular cell biology: organization and molecular evolution of rDNA, nucleolar dominance and nucleolus structure Progr. Bot. 65 106–146 Occurrence Handle1:CAS:528:DC%2BD2cXitVKktLk%3D

    CAS  Google Scholar 

  • L. Watson M. J. Dallwitz (1994) Grass genera of the world. Ed. 2 CAB International Wallingford

    Google Scholar 

  • J. Xu E. D. Earle (1996) ArticleTitleDirect FISH of 5S rDNA on tomato pachytene chromosomes places the gene at the heterochromatic knob immediately adjacent to the centromere of chromosome 1 Genome 39 216–221 Occurrence Handle1:CAS:528:DyaK28XitV2gtro%3D Occurrence Handle18469888

    CAS  PubMed  Google Scholar 

  • V. Zoldos D. Papes M. Cerbah O. Panaud V. Besendorfer S. Siljak-Yakovlev (1999) ArticleTitleMolecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species Theor. Appl. Genet. 99 969–977 Occurrence Handle10.1007/s001220051404 Occurrence Handle1:CAS:528:DyaK1MXotVCis7s%3D

    Article  CAS  Google Scholar 

  • J. F. Zoller Y. Yang R. G. Herrmann U. Hohmann (2001) ArticleTitleComparative genomic in situ hybridization (cGISH) analysis on plant chromosomes revealed by labelled Arabidopsis DNA Chromosome Res. 9 357–375 Occurrence Handle11448038 Occurrence Handle10.1023/A:1016767100766 Occurrence Handle1:CAS:528:DC%2BD3MXltVels7w%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Röser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winterfeld, G., Röser, M. Chromosomal localization and evolution of satellite DNAs and heterochromatin in grasses (Poaceae), especially tribe Aveneae. Plant Syst. Evol. 264, 75–100 (2007). https://doi.org/10.1007/s00606-006-0482-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-006-0482-1

Keywords

Navigation