Skip to main content
Log in

The biharmonicity of sections of the tangent bundle

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The bienergy of a vector field on a Riemannian manifold \((M, g)\) is defined to be the bienergy of the corresponding map \((M, g)\mapsto (TM, g_{S})\), where the tangent bundle \(TM\) is equipped with the Sasaki metric \(g_{S}\). The constrained variational problem is studied, where variations are confined to vector fields, and the corresponding critical point condition characterizes biharmonic vector fields. Furthermore, we prove that if \((M, g)\) is a compact oriented \(m\)-dimensional Riemannian manifold and \(X\) a tangent vector of \(M\), then \(X\) is a biharmonic vector field of \((M, g)\) if and only if \(X\) is parallel. Finally, we give examples of non-parallel biharmonic vector fields in the case which the base manifold \((M, g)\) is non-compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [6], the authors proved Corollary 1.2 following a quite different approach from that of the paper. We should point out that their paper includes some serious mistakes. More precisely, on page 470 and line 14, the term \(\nabla ^{X}_{e_{i}}(\tau ^{v}(X))^{V}\) should be calculated at the point \((x, X_{x})\in TM\) in order to be a section of the pull-back bundle \(X^{-1}(TTM)\). As a consequence, this mistake is transferred to the calculation of the term \({{\mathrm{tr}}}_{g}\nabla ^{2}(\tau ^{v}(X))^{V}_{(x, u)}\) (page 470 and line 18).

References

  1. Aronszajn, N., Creese, T. M. , Lipkin,L. J.: Polyharmonic functions, Oxford (1983)

  2. Baird, P., Wood, J.C.: Harmonic Morphisms Between Riemannian Manifolds, London Math. Soc. Monogr. No. 29. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  3. Baird, P., Fardoun, A., Ouakkas, S.: Liouville-type theorems for biharmonic maps between Riemannian manifolds. Adv. Calc. Var. 3(1), 49–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of \({S}^{3}\). Intern. J. Math. 12, 867–876 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Israel J. Math. 130, 109–123 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Djaa, M., Elhendi, H., Ouakkas, S.: On the biharmonic vector fields. Turk. J. Math. 36, 463–474 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Dragomir, S., Perrone, D.: Harmonic Vector Fields: Variational Principles and Differential Geometry. Elsevier, Amsterdam (2011)

    Google Scholar 

  8. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gil-Medrano, O.: Relationship between volume and energy of unit vector fields. Differ. Geom. Appl. 15, 137–152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gudmundsson, S., Kappos, E.: On the geometry of tangent bundles. Expos. Math. 20, 1–41 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Higuchi, A., Kay, B.S., Wood, C.M.: The energy of unit vector fields on the 3-sphere. J. Geom. Phys. 37(1–2), 137–155 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishihara, T.: Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13, 23–27 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Jiang, G.: 2-harmonic maps and their first and second variational formulas translated into English by Hajime Urakawa. Note Math. 28(suppl. n. 1), 209–232 (2008)

    Google Scholar 

  14. Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Union Math. Argent. 47(2), 1–22 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Nakauchi, N., Urakawa, H., Gudmundsson, S.: Biharmonic maps into a Riemannian manifold of non-positive curvature. Geom. Dedic. 169(1), 263–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nouhaud, O.: Applications harmoniques d’ une variété Riemannienne dans son fibré tangent. C R Acad. Sci. Paris 284, 815–818 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman and Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  18. Urakawa, H.: Calculus of Variations and Harmonic Maps, Transl. Math. Monograph, vol. 132. Amer. Math. Soc., Providence (1993)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the referee for several useful comments on the manuscript. Also, the authors acknowledge Professor Hisashi Naito for his suggestion about the non existence of global solution of the ODE (3.19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Markellos.

Additional information

Communicated by A. Cap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markellos, M., Urakawa, H. The biharmonicity of sections of the tangent bundle. Monatsh Math 178, 389–404 (2015). https://doi.org/10.1007/s00605-014-0702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0702-7

Keywords

Mathematics Subject Classification

Navigation