Skip to main content
Log in

Cubic Pisot unit combinatorial games

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Generalized Tribonacci morphisms are defined on a three letters alphabet and generate the so-called generalized Tribonacci words. We present a family of combinatorial removal games on three piles of tokens whose set of \({\mathcal{P}}\) -positions is coded exactly by these generalized Tribonacci words. To obtain this result, we study combinatorial properties of these words like gaps between consecutive identical letters or recursive definitions of these words. β-Numeration systems are then used to show that these games are tractable, i.e., deciding whether a position is a \({\mathcal{P}}\) -position can be checked in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertrand-Mathis A.: Comment écrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Hungar. 54, 237–241 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berlekamp E.R., Conway J.H., Guy R.K.: Winning Ways (two volumes). Academic Press, London (1982)

    Google Scholar 

  3. Bouton C.L.: Nim, a game with a complete mathematical theory. Ann. Math. 3, 35–39 (1905)

    Article  MathSciNet  Google Scholar 

  4. Cobham A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Conway J.H.: On Number and Games. Academic Press, London (1976)

    Google Scholar 

  6. Duchêne, E., Rigo, M.: A morphic approach to combinatorial games: the Tribonacci case. Theor. Inform. Appl. (2008, to appear)

  7. Frougny, C., Solomyak, B.: On representation of integers in linear numeration systems, in Ergodic theory of Z d actions (Warwick, 1993–1994), 345–368, London Math. Soc. Lecture Note Ser. 228, Cambridge University Press, Cambridge (1996)

  8. Fraenkel A.: How to beat your Wythoff games’ opponent on three fronts. Am. Math. Monthly 89, 353–361 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fraenkel A.: Heap games, numeration systems and sequences. Ann. Combin. 2, 197–210 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fraenkel A.: Complexity, appeal and challenges of combinatorial games. Theor. Comput. Sci. 313, 393–415 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lothaire M.: Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  12. Parry W.: On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rigo M., Maes A.: More on generalized automatic sequences. J. Autom. Lang. Comb. 7, 351–376 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Wythoff W.A.: A modification of the game of Nim. Nieuw Arch. Wisk. 7, 199–202 (1907)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rigo.

Additional information

E. Duchêne is post-doctoral at University of Liège thanks to a “Subside fédéral pour la Recherche”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duchêne, E., Rigo, M. Cubic Pisot unit combinatorial games. Monatsh Math 155, 217–249 (2008). https://doi.org/10.1007/s00605-008-0006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-008-0006-x

Keywords

Mathematics Subject Classification (2000)

Navigation