Skip to main content

From Combinatorial Games to Shape-Symmetric Morphisms

  • Chapter
  • First Online:
Substitution and Tiling Dynamics: Introduction to Self-inducing Structures

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2273))

Abstract

Siegel suggests in his book on combinatorial games that quite simple games provide us with challenging problems: “No general formula is known for computing arbitrary Grundy values of Wythoff’s game. In general, they appear chaotic, though they exhibit a striking fractal-like pattern.”. This observation is the first motivation behind this chapter. We present some of the existing connections between combinatorial game theory and combinatorics on words. In particular, multidimensional infinite words can be seen as tilings of \(\mathbb {N}^d\). They naturally arise from subtraction games on d heaps of tokens. We review notions such as k-automatic, k-regular or shape-symmetric multidimensional words. The underlying general idea is to associate a finite automaton with a morphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A video is available at http://library.cirm-math.fr/.

  2. 2.

    Consider a simple path v 0 → v 1 →⋯ → v r of maximal length r in a finite acyclic graph. Then v r has out-degree zero. Proceed by contradiction and assume that there is an edge starting from v r. Either it goes to one of the v i’s with i < r and it creates a cycle. Or, it goes to some other vertex and we may build a longer simple path. Both situations lead to a contradiction.

  3. 3.

    The following proof is inspired by the one found in Thomas S. Ferguson’s lecture notes on CGT.

  4. 4.

    A coding is a morphism from A to B where the image of every letter has length 1.

  5. 5.

    This means that every letter of the alphabet appears at least once in x.

  6. 6.

    When writing this chapter, a paper by Thijmen J. P. Krebs appeared on arXiv [55].

  7. 7.

    Compared with complete functions in Definition 5.4.8.

  8. 8.

    Integer are the only rational numbers that are Pisot numbers.

  9. 9.

    The first few values may be checked by hand.

  10. 10.

    One can relate this result to a theorem of Kummer. The p-adic valuation of \(\binom {m}{n}\) is the number of carries when adding n to m − n in base p. See, e.g., [77] and the references therein.

  11. 11.

    One could relax the assumption about regularity of the language on which the numeration system is built to encompass a larger framework. Nevertheless, most of the nice properties that we shall present (in particular, the equivalence with morphic words) do not hold without the regularity assumption.

  12. 12.

    A set \(X\subseteq \mathbb {N}\) is k-recognizable if \( \operatorname {\mathrm {rep}}_k(X)\subseteq \{0,\ldots ,k-1\}^*\) is recognized by a DFA or, equivalently, if the characteristic sequence of X is k-automatic.

References

  1. M.H. Albert, R.J. Nowakowski (eds.), Games of no chance 3, in Mathematical Sciences Research Institute Publications, vol. 56 (Cambridge University Press, Cambridge, 2009). Papers from the Combinatorial Game Theory Workshop held in Banff, AB, June 2005

    Google Scholar 

  2. M.H. Albert, R.J. Nowakowski, D. Wolfe, Lessons in Play: An Introduction to Combinatorial Game Theory (A K Peters/CRC Press, 2007)

    Google Scholar 

  3. J.-P. Allouche, V. Berthé, Triangle de Pascal, complexité et automates. Bull. Belg. Math. Soc. Simon Stevin 4(1), 1–23 (1997). Journées Montoises (Mons, 1994)

    Google Scholar 

  4. J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, A. Petersen, G. Skordev, Automaticity of double sequences generated by one-dimensional linear cellular automata. Theoret. Comput. Sci. 188(1–2), 195–209 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-P. Allouche, F. von Haeseler, Peitgen, H.-O., G. Skordev, Linear cellular automata, finite automata and Pascal’s triangle. Discrete Appl. Math. 66(1), 1–22 (1996)

    Google Scholar 

  6. J.-P. Allouche, J. Shallit, The ring of k-regular sequences. Theoret. Comput. Sci. 98(2), 163–197 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-P. Allouche, J. Shallit, The ubiquitous Prouhet–Thue–Morse sequence, in Sequences and Their Applications (Singapore, 1998). Springer Series of Discrete Mathematics and Theoretical Computer Science (Springer, London, 1999), pp. 1–16

    Google Scholar 

  8. J.-P. Allouche, J. Shallit, Automatic Sequences, Theory, Applications, Generalizations (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  9. J.-P. Allouche, J. Shallit, The ring of k-regular sequences. II. Theoret. Comput. Sci. 307(1), 3–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.B. Austin, Impartial and Partisan Games. Master’s thesis, Univ. of Calgary (1976)

    Google Scholar 

  11. A. Barbé, F. von Haeseler, Limit sets of automatic sequences. Adv. Math. 175(2), 169–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Berge, The Theory of Graphs (Dover Publications, Mineola, 2001)

    MATH  Google Scholar 

  13. E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, vol. 1, 2nd edn. (A K Peters, Natick, 2001)

    Google Scholar 

  14. U. Blass, A.S. Fraenkel, The Sprague–Grundy function for Wythoff’s game. Theoret. Comput. Sci. 75(3), 311–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. C.L. Bouton, Nim, a game with a complete mathematical theory. Ann. Math. 3, 35–39 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181(1), 17–43 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin 1(2), 191–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Carpi, C. Maggi, On synchronized sequences and their separators. Theor. Inform. Appl. 35(6), 513–524 (2002) (2001). A tribute to Aldo de Luca

    Google Scholar 

  19. O. Carton, W. Thomas, The monadic theory of morphic infinite words and generalizations. Inf. Comput. 176, 51–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Cassaigne, E. Duchêne, M. Rigo, Non-homogeneous Beatty sequences leading to invariant games. SIAM J. Discret. Math. 30, 1798–1829 (2016)

    Article  MATH  Google Scholar 

  21. J. Cassaigne, F. Nicolas, Factor complexity, in Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and Its Applications, vol. 135 (Cambridge University Press, Cambridge, 2010), pp. 163–247

    Google Scholar 

  22. É. Charlier, T. Kärki, M. Rigo, Multidimensional generalized automatic sequences and shape-symmetric morphic words. Discret. Math. 310(6–7), 1238–1252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. É. Charlier, J. Leroy, M. Rigo, Asymptotic properties of free monoid morphisms. Linear Algebra Appl. 500, 119–148 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. É. Charlier, N. Rampersad, J. Shallit, Enumeration and decidable properties of automatic sequences. Internat. J. Found. Comput. Sci. 23(5), 1035–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. É. Charlier, M. Rigo, W. Steiner, Abstract numeration systems on bounded languages and multiplication by a constant. Integers 8, #A35 (2008)

    Google Scholar 

  26. Ch. Choffrut, W. Goldwurm, Rational transductions and complexity of counting problems. Math. Syst. Theory 28(5), 437–450 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ch. Choffrut, J. Karhumäki, Combinatorics of words, in Handbook of Formal Languages, vol. 1 (Springer, Berlin, 1997), pp. 329–438

    Book  Google Scholar 

  28. G. Christol, T. Kamae, M. Mendès France, G. Rauzy, Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108(4), 401–419 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, in IEEE Conference Record of 1968 Ninth Annual Symposium on Switching and Automata Theory (1968), pp. 51–60. Also appeared as IBM Research Technical Report RC-2178, August 23 1968

    Google Scholar 

  30. A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata. Math. Syst. Theory 3, 186–192 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Cobham, Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Dress, A. Flammenkamp, N. Pink, Additive periodicity of the Sprague–Grundy function of certain Nim games. Adv. Appl. Math. 22, 249–270 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Duchêne, A.S. Fraenkel, R.J. Nowakowski, M. Rigo, Extensions and restrictions of Wythoff’s game preserving its P positions. J. Combin. Theory Ser. A 117(5), 545–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Duchêne, M. Rigo, Cubic Pisot unit combinatorial games. Monatsh. Math. 155(3–4), 217–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Duchêne, M. Rigo, A morphic approach to combinatorial games: the Tribonacci case. Theor. Inform. Appl. 42(2), 375–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Duchêne, M. Rigo, Invariant games. Theor. Comput. Sci. 411(34–36), 3169–3180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions. Theoret. Comput. Sci. 65 (1989)

    Google Scholar 

  38. F. Durand, Cobham’s theorem for substitutions. J. Eur. Math. Soc. 13(6), 1799–1814 (2011)

    MathSciNet  MATH  Google Scholar 

  39. S. Eilenberg, Automata, Languages, and Machines, vol. A (Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974). Pure and Applied Mathematics, vol. 58

    Google Scholar 

  40. N.P. Fogg, in Substitutions in Dynamics, Arithmetics and Combinatorics, ed. by V. Berthé, S. Ferenczi, C. Mauduit A. Siegel. Lecture Notes in Mathematics, vol. 1794 (Springer, Berlin, 2002)

    Google Scholar 

  41. A.S. Fraenkel, The bracket function and complementary sets of integers. Can. J. Math. 21, 6–27 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  42. A.S. Fraenkel, How to beat your Wythoff games’ opponent on three fronts. Am. Math. Mon. 89(6), 353–361 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. A.S. Fraenkel, The use and usefulness of numeration systems, in Combinatorial Algorithms on Words (Maratea, 1984). NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 12 (Springer, Berlin, 1985), pp. 187–203

    Google Scholar 

  44. A.S. Fraenkel, Complexity, appeal and challenges of combinatorial games. Theoret. Comput. Sci. 313(3), 393–415 (2004). Algorithmic combinatorial game theory

    Google Scholar 

  45. A.S. Fraenkel, Euclid and Wythoff games. Discret. Math. 304, 65–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. A.S. Fraenkel, Complementary iterated floor words and the Flora game. SIAM J. Discret. Math. 24(2), 570–588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ch. Frougny, On the sequentiality of the successor function. Inf. Comput. 139(1), 17–38 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. S.W. Golomb, A mathematical investigation of games of “take-away”. J. Combin. Theory 1, 443–458 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  49. R.K. Guy, C.A. Smith, The G-values of various games. Proc. Camb. Philos. Soc. 52, 514–526 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  50. F. von Haeseler, H.-O. Peitgen, G. Skordev, Self-similar structure of rescaled evolution sets of cellular automata. I. Internat. J. Bifur. Chaos Appl. Sci. Eng. 11(4), 913–926 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Honkala, Bases and ambiguity of number systems. Theoret. Comput. Sci. 31(1–2), 61–71 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Honkala, On unambiguous number systems with a prime power base. Acta Cybernet. 10(3), 155–163 (1992)

    MathSciNet  MATH  Google Scholar 

  53. J. Honkala, On the simplification of infinite morphic words. Theoret. Comput. Sci. 410(8–10), 997–1000 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. G. Katona, A theorem of finite sets, in Theory of Graphs (Proceedings of the Colloquium Tihany, 1966) (Academic Press, New York, 1968), pp. 187–207

    Google Scholar 

  55. Krebs, T.J.P.: A more reasonable proof of Cobham’s theorem. CoRR abs/1801.06704 (2018). http://arxiv.org/abs/1801.06704

  56. H.A. Landman, More games of no chance, in Chap. A Simple FSM-Based Proof of the Additive Periodicity of the Sprague–Grundy Function of Wythoff’s Game (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  57. U. Larsson, P. Hegarty, A.S. Fraenkel, Invariant and dual subtraction games resolving the Duchêne–Rigo conjecture. Theoret. Comput. Sci. 412(8–10), 729–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. M.V. Lawson, Finite Automata (Chapman & Hall/CRC, Boca Raton, 2004)

    Google Scholar 

  59. P. Lecomte, M. Rigo, Abstract numeration systems, in Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135 (Cambridge University Press, Cambridge, 2010), pp. 108–162

    Google Scholar 

  60. P.B.A. Lecomte, M. Rigo, Numeration systems on a regular language. Theory Comput. Syst. 34(1), 27–44 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Leroy, M. Rigo, M. Stipulanti, Generalized Pascal triangle for binomial coefficients of words. Adv. in Appl. Math. 80, 24–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Lothaire, in Combinatorics on Words. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  63. M. Lothaire, in Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 90 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  64. A. Maes, Morphic predicates and applications to the decidability of arithmetic theories. Ph.D. thesis, UMH Univ. Mons-Hainaut (1999)

    Google Scholar 

  65. V. Marsault, J. Sakarovitch, The signature of rational languages. Theoret. Comput. Sci. 658, 216–234 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. V. Marsault, J. Sakarovitch, Trees and languages with periodic signature. Indag. Math. 28(1), 221–246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. R.J. Nowakowski (ed.), Games of no chance 4, in Mathematical Sciences Research Institute Publications, vol. 63 (Cambridge University Press, New York, 2015). Selected papers from the Banff International Research Station (BIRS) Workshop on Combinatorial Games held in Banff, AB, 2008

    Google Scholar 

  68. K. O’Bryant, Fraenkel’s partition and brown’s decomposition. Integers 3 (2003)

    Google Scholar 

  69. D. Perrin, Finite automata, in Handbook of Theoretical Computer Science, vol. B (Elsevier, Amsterdam, 1990), pp. 1–57

    Google Scholar 

  70. M. Rigo, Generalization of automatic sequences for numeration systems on a regular language. Theoret. Comput. Sci. 244(1–2), 271–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Rigo, Numeration systems: a link between number theory and formal language theory, in Developments in Language Theory. Lecture Notes in Computer Science, vol. 6224 (Springer, Berlin, 2010), pp. 33–53

    Google Scholar 

  72. M. Rigo, Formal Languages, Automata and Numeration Systems 1. (ISTE/ Wiley, London/Hoboken, 2014). Introduction to Combinatorics on Words, With a foreword by Valérie Bethé

    Google Scholar 

  73. M. Rigo, Formal Languages, Automata and Numeration Systems 2. Networks and Telecommunications Series (ISTE/ Wiley, London/Hoboken, 2014). Applications to recognizability and decidability, With a foreword by Valérie Berthé

    Google Scholar 

  74. M. Rigo, Advanced graph theory and combinatorics, in Networks and Telecommunications Series. ISTE, London (Wiley, Hoboken, 2016)

    Google Scholar 

  75. M. Rigo, A. Maes, More on generalized automatic sequences. J. Autom. Lang. Comb. 7(3), 351–376 (2002)

    MathSciNet  MATH  Google Scholar 

  76. M. Rigo, L. Waxweiler, A note on syndeticity, recognizable sets and Cobham’s theorem. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 88, 169–173 (2006)

    MathSciNet  MATH  Google Scholar 

  77. E. Rowland, Binomial coefficients, valuations, and words, in Developments in Language Theory. Lecture Notes in Computer Science, vol. 10396 (Springer, Berlin, 2017), pp. 68–74

    Google Scholar 

  78. E. Rowland, R. Yassawi, A characterization of p-automatic sequences as columns of linear cellular automata. Adv. in Appl. Math. 63, 68–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  79. J. Sakarovitch, Elements of Automata Theory (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  80. P.V. Salimov, On uniform recurrence of a direct product. Discret. Math. Theoret. Comput. Sci. 12, 1–8 (2010)

    MathSciNet  MATH  Google Scholar 

  81. O. Salon, Suites automatiques à multi-indices et algébricité. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 501–504 (1987)

    MathSciNet  MATH  Google Scholar 

  82. O. Salon, Suites automatiques à multi-indices, in Séminaire de Théorie des Nombres de Bordeaux (1986/1987), pp. 4.01–4.27. Followed by an appendix by J. Shallit

    Google Scholar 

  83. J. Shallit, A Second Course in Formal Languages and Automata Theory (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  84. J.O. Shallit, A generalization of automatic sequences. Theoret. Comput. Sci. 61, 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  85. A.N. Siegel, in Combinatorial Game Theory. Graduate Studies in Mathematics, vol. 146 (American Mathematical Society, Providence, 2013)

    Google Scholar 

  86. T.A. Sudkamp, Languages and Machines: An Introduction to the Theory of Computer Science (Addison-Wesley, Reading, 2006)

    Google Scholar 

  87. W.A. Wythoff, A modification of the game of nim. Nieuw Arch. Wiskd. 7, 199–202 (1907)

    MATH  Google Scholar 

  88. É. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège 41, 179–182 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Even though it was some hard work preparing the lectures and this chapter, I am quite happy with the final result (with this kind of exercise, you always selfishly learn a lot and ask yourself new questions). I therefore warmly thank Professors Shigeki Akiyama and Pierre Arnoux for their invitation to contribute to this school. I would also like to thank Eric Duchêne for his constant help when collaborating on game related problems. I also had several colleagues reading drafts of this chapter: first M. Stipulanti and then, E. Duchêne, J. Leroy and A. Parreau. I thank them all for their feedback. Finally, I thank the anonymous reviewer for his/her careful reading and many suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rigo, M. (2020). From Combinatorial Games to Shape-Symmetric Morphisms. In: Akiyama, S., Arnoux, P. (eds) Substitution and Tiling Dynamics: Introduction to Self-inducing Structures. Lecture Notes in Mathematics, vol 2273. Springer, Cham. https://doi.org/10.1007/978-3-030-57666-0_5

Download citation

Publish with us

Policies and ethics