Skip to main content

Binomial Complexities and Parikh-Collinear Morphisms

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2022)

Abstract

Inspired by questions raised by Lejeune, we study the relationships between the k and \((k+1)\)-binomial complexities of an infinite word; as well as the link with the usual factor complexity. We show that pure morphic words obtained by iterating a Parikh-collinear morphism, i.e., a morphism mapping all words to words with bounded abelian complexity, have bounded k-binomial complexity. We further study binomial properties of the images of aperiodic binary words in general, and Sturmian words in particular, by a power of the Thue–Morse morphism.

M. Stipulanti and M. Whiteland—Supported by the FNRS Research grants 1.B.397.20F and 1.B.466.21F respectively. M. Whiteland dedicates this paper to the memory of his father Alan Whiteland (1940–2021).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We define \(\prec \) deliberately with “infinitely many” rather than “all large enough”: for the period-doubling word \(\mathbf {pd}\) (fixed point of \(0\mapsto 01\), \(1\mapsto 00\)) there exist infinitely many n and m such that \(\mathsf {b}_{\mathbf {pd}}^{(2)}(n) = \mathsf {p}_{\mathbf {pd}}(n)\) and \(\mathsf {b}_{\mathbf {pd}}^{(2)}(m) < \mathsf {p}_{\mathbf {pd}}(m)\) [9, Prop. 4.5.1].

  2. 2.

    We warn the reader that the term \(\varphi \)-factorization has a different meaning in [10]. Our \(\varphi ^j\)-factorization corresponds to their “factorization of order j”.

  3. 3.

    We note that [10, Theorem 48] is stated for \(j\ge 3\). The case \(j=1\) is trivial. The case \(j=2\) is obtained by looking closely at the proof of [10, Theorem 34].

References

  1. Allouche, J.P., Shallit, J.: Automatic Sequences Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511546563

    Book  MATH  Google Scholar 

  2. Cassaigne, J., Fici, G., Sciortino, M., Zamboni, L.Q.: Cyclic complexity of words. J. Comb. Theory Ser. A 145, 36–56 (2017). https://doi.org/10.1016/j.jcta.2016.07.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. S. 22(4), 905–920 (2011). https://doi.org/10.1142/S0129054111008489

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheraghchi, M., Gabrys, R., Milenkovic, O., Ribeiro, J.: Coded trace reconstruction. IEEE Trans. Inf. Theory 66(10), 6084–6103 (2020). https://doi.org/10.1109/TIT.2020.2996377

    Article  MathSciNet  MATH  Google Scholar 

  5. Dudík, M., Schulman, L.J.: Reconstruction from subsequences. J. Comb. Theory, Ser. A 103(2), 337–348 (2003). https://doi.org/10.1016/S0097-3165(03)00103-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Frid, A.: Applying a uniform marked morphism to a word. Discrete Math Theor. Comput. Sci. 3(3), 125–139 (1999). https://doi.org/10.46298/dmtcs.255

    Article  MathSciNet  MATH  Google Scholar 

  7. Grillenberger, C.: Constructions of strictly ergodic systems. I. Given entropy. Z. Wahrscheinlichkeit. 25, 323–334 (1973). https://doi.org/10.1007/BF00537161

    Article  MathSciNet  MATH  Google Scholar 

  8. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equivalence and complexity of infinite words. J. Comb. Theory Ser. A 120(8), 2189–2206 (2013). https://doi.org/10.1016/j.jcta.2013.08.008

    Article  MathSciNet  MATH  Google Scholar 

  9. Lejeune, M.: On the \(k\)-binomial equivalence of finite words and \(k\)-binomial complexity of infinite words. Ph.D. thesis, University of Liège (2021). http://hdl.handle.net/2268/259266

  10. Lejeune, M., Leroy, J., Rigo, M.: Computing the \(k\)-binomial complexity of the Thue-Morse word. J. Comb. Theory Ser. A 176, 44 (2020). https://doi.org/10.1016/j.jcta.2020.105284

    Article  MathSciNet  MATH  Google Scholar 

  11. Lejeune, M., Rigo, M., Rosenfeld, M.: Templates for the \(k\)-binomial complexity of the Tribonacci word. Adv. Appl. Math. 112, 26 (2020). https://doi.org/10.1016/j.aam.2019.101947

    Article  MathSciNet  MATH  Google Scholar 

  12. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511566097

    Book  MATH  Google Scholar 

  13. Lü, X.T., Chen, J., Wen, Z.X., Wu, W.: On the \(2\)-binomial complexity of the generalized Thue-Morse words (2021, preprint). https://arxiv.org/abs/2112.05347

  14. Ochsenschläger, P.: Binomialkoeffizienten und shuffle-zahlen. T.H. Darmstadt, Technischer bericht, Fachbereicht Informatik (1981)

    Google Scholar 

  15. Peltomäki, J.: Introducing privileged words: Privileged complexity of Sturmian words. Theor. Comput. Sci. 500, 57–67 (2013). https://doi.org/10.1016/j.tcs.2013.05.028

    Article  MathSciNet  MATH  Google Scholar 

  16. Rigo, M.: Relations on words. Indag Math. New Ser. 28(1), 183–204 (2017). https://doi.org/10.1016/j.indag.2016.11.018

    Article  MathSciNet  MATH  Google Scholar 

  17. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial complexity of infinite words. Theor. Comput. Sci. 601, 47–57 (2015). https://doi.org/10.1016/j.tcs.2015.07.025

    Article  MathSciNet  MATH  Google Scholar 

  18. Rigo, M., Stipulanti, M., Whiteland, M.A.: Binomial complexities and Parikh-collinear morphisms (2022, preprint). https://arxiv.org/abs/2201.04603

  19. Whiteland, M.A.: Equations over the k-binomial monoids. In: Lecroq, T., Puzynina, S. (eds.) WORDS 2021. LNCS, vol. 12847, pp. 185–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85088-3_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manon Stipulanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rigo, M., Stipulanti, M., Whiteland, M.A. (2022). Binomial Complexities and Parikh-Collinear Morphisms. In: Diekert, V., Volkov, M. (eds) Developments in Language Theory. DLT 2022. Lecture Notes in Computer Science, vol 13257. Springer, Cham. https://doi.org/10.1007/978-3-031-05578-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05578-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05577-5

  • Online ISBN: 978-3-031-05578-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics