Skip to main content
Log in

Cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of Shigella flexneri

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Pathogen infections including Shigella flexneri have posed a significant threat to human health for numerous years. Although culturing and qPCR were the gold standards for pathogen detection, time-consuming and instrument-dependent restrict their application in rapid diagnosis and economically less-developed regions. Thus, it is urgently needed to develop rapid, simple, sensitive, accurate, and low-cost detection methods for pathogen detection. In this study, an immunomagnetic beads-recombinase polymerase amplification-CRISPR/Cas12a (IMB-RPA-CRISPR/Cas12a) method was built based on a cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of S. flexneri in the laboratory. Firstly, S. flexneri was specifically captured and enriched by IMB (Shigella antibody-coated magnetic beads), and the genomic DNA was released and used as the template in the RPA reaction. Then, the RPA products were mixed with the pre-loaded CRISPR/Cas12a for fluorescence visualization. The results were observed by naked eyes under LED blue light, with a sensitivity of 5 CFU/mL in a time of 70 min. With no specialized equipment or complicated technical requirements, the IMB-RPA-CRISPR/Cas12a diagnostic method can be used for visual, rapid, and simple detection of S. flexneri and can be easily adapted to monitoring other pathogens.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Kuehl CJ, D'Gama JD, Warr AR et al (2020) An oral inoculation infant rabbit model for Shigella infection. mBio 11:e03105-19

  2. Chowdhury R, Bitar PDP, Bell KE et al (2023) Shigella flexneri utilizes intestinal signals to control its virulence. Gut Microbes 15:2256767

    Article  PubMed  PubMed Central  Google Scholar 

  3. Diallo K, Feteh VF, Ibe L et al (2021) Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine 65:103274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goda T, Tabata M, Miyahara Y (2015) Electrical and electrochemical monitoring of nucleic acid amplification. Front Bioeng Biotechnol 3:29

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Liu Y, Shi Y et al (2020) Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. Trends Analyt Chem 127:115912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee SH, Park SM, Kim BN et al (2019) Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 141:111448

    Article  CAS  PubMed  Google Scholar 

  7. Luo G, Yi T, Wang Q et al (2021) Stem-loop-primer assisted isothermal amplification enabling high-specific and ultrasensitive nucleic acid detection. Biosens Bioelectron 184:113239

    Article  CAS  PubMed  Google Scholar 

  8. Pumford EA, Lu J, Spaczai I et al (2020) Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens Bioelectron 170:112674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azizi M, Zaferani M, Cheong SH et al (2019) Pathogenic bacteria detection using RNA-based loop-mediated isothermal-amplification-assisted nucleic acid amplification via droplet microfluidics. ACS Sens 4:841–848

    Article  CAS  PubMed  Google Scholar 

  10. Borysiak MD, Kimura KW, Posner JD (2015) NAIL: nucleic acid detection using isotachophoresis and loop-mediated isothermal amplification. Lab Chip 15:1697–1707

    Article  CAS  PubMed  Google Scholar 

  11. Khan P, Aufdembrink LM, Engelhart AE (2020) Isothermal SARS-CoV-2 diagnostics: tools for enabling distributed pandemic testing as a means of supporting safe reopenings. ACS Synth Biol 9:2861–2880

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Qian C, Liu C et al (2020) Nucleic acid amplification free biosensors for pathogen detection. Biosens Bioelectron 153:112049

    Article  CAS  PubMed  Google Scholar 

  13. Lobato IM, O’Sullivan CK (2018) Recombinase polymerase amplification: basics, applications and recent advances. Trends Analyt Chem 98:19–35

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Shi Y, Chen C et al (2019) Rapid, visual detection of Klebsiella pneumoniae using magnetic nanoparticles and an horseradish peroxidase-probe based immunosensor. J Biomed Nanotechnol 15:1061–1071

    Article  CAS  PubMed  Google Scholar 

  15. Choi MH, Lee J, Seo YJ (2022) Dual-site ligation-assisted loop-mediated isothermal amplification (dLig-LAMP) for colorimetric and point-of-care determination of real SARS-CoV-2. Mikrochim Acta 189:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim SE, Tieu MV, Hwang SY et al (2020) Magnetic particles: their applications from sample preparations to biosensing platforms. Micromachines (Basel) 11:302

  17. Du Z, Lin S, Li J et al (2022) Nano-gold-enhanced LAMP method for qualitative visual detection of Salmonella in milk. Mikrochim Acta 189:365

    Article  CAS  PubMed  Google Scholar 

  18. Tang C, He Z, Liu H et al (2020) Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnol 18:62

    Article  Google Scholar 

  19. Modh H, Scheper T, Walter JG (2018) Aptamer-modified magnetic beads in biosensing. Sensors (Basel) 18:1041

  20. Tao D, Liu J, Nie X et al (2020) Application of CRISPR-Cas12a enhanced fluorescence assay coupled with nucleic acid amplification for the sensitive detection of African swine fever virus. ACS Synth Biol 9:2339–2350

    Article  CAS  PubMed  Google Scholar 

  21. Huang D, Qian J, Shi Z et al (2020) CRISPR-Cas12a-assisted multicolor biosensor for semiquantitative point-of-use testing of the nopaline synthase terminator in genetically modified crops by unaided eyes. ACS Synth Biol 9:3114–3123

    Article  CAS  PubMed  Google Scholar 

  22. Zhou T, Huang M, Lin J et al (2021) High-fidelity CRISPR/Cas13a trans-cleavage-triggered rolling circle amplified DNAzyme for visual profiling of MicroRNA. Anal Chem 93:2038–2044

    Article  CAS  PubMed  Google Scholar 

  23. Goldberg GW, Spencer JM, Giganti DO et al (2021) Engineered dual selection for directed evolution of SpCas9 PAM specificity. Nat Commun 12:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liao C, Ttofali F, Slotkowski RA et al (2019) Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat Commun 10:2948

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liao C, Slotkowski RA, Achmedov T et al (2019) The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays. RNA Biol 16:404–412

    Article  PubMed  Google Scholar 

  26. van Dongen JE, Berendsen JTW, Eijkel JCT et al (2021) A CRISPR/Cas12a-assisted in vitro diagnostic tool for identification and quantification of single CpG methylation sites. Biosens Bioelectron 194:113624

    Article  PubMed  Google Scholar 

  27. Yao R, Liu D, Jia X et al (2018) CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 3:135–149

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qian W, Huang J, Wang X et al (2021) CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII.4. Virology 564:26–32

    Article  CAS  PubMed  Google Scholar 

  29. Karponi G, Kritas SK, Papadopoulou G et al (2019) Development of a CRISPR/Cas9 system against ruminant animal brucellosis. BMC Vet Res 15:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He Q, Yu D, Bao M et al (2020) High-throughput and all-solution phase African swine fever virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosens Bioelectron 154:112068

    Article  CAS  PubMed  Google Scholar 

  31. Xiong D, Dai W, Gong J et al (2020) Rapid detection of SARS-CoV-2 with CRISPR-Cas12a. PLoS Biol 18:e3000978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Li J, Li S et al (2021) LAMP-CRISPR-Cas12-based diagnostic platform for detection of Mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test. Mikrochim Acta 188:347

    Article  CAS  PubMed  Google Scholar 

  33. Shi Y, Xu M, Duan X et al (2021) WarmStart colorimetric loop-mediated isothermal amplification for the one-tube, contamination-free and visualization detection of Shigella flexneri. Int J Infect Dis 112:55–62

    Article  PubMed  Google Scholar 

  34. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13:134

    Article  CAS  Google Scholar 

  35. Labun K, Montague TG, Krause M et al (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47:W171–W174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang QY, Dong H, Zou B et al (2015) Discovery of dengue virus NS4B inhibitors. J Virol 89:8233–8244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu J, Chen P, Hu X et al (2023) An ultra-sensitive and specific nanoplasmonic-enhanced isothermal amplification platform for the ultrafast point-of-care testing of SARS-CoV-2. Chem Eng J 451:138822

    Article  CAS  PubMed  Google Scholar 

  38. Karesh WB, Dobson A, Lloyd-Smith JO et al (2012) Ecology of zoonoses: natural and unnatural histories. Lancet 380:1936–1945

    Article  PubMed  PubMed Central  Google Scholar 

  39. Faridi MA, Ramachandraiah H, Banerjee I et al (2017) Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics. J Nanobiotechnology 15:3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu W, Yue F, Lee LP (2021) Integrated point-of-care molecular diagnostic devices for infectious diseases. Acc Chem Res 54:4107–4119

    Article  CAS  PubMed  Google Scholar 

  41. Wu S, Duan H, Zhang Y et al (2022) A Salmonella microfluidic chip combining non-contact eddy heater and 3D fan-shaped mixer with recombinase aided amplification. Biosensors (Basel) 12:726

  42. Ma C, Zhang M, Chen S et al (2016) Rapid and enzyme-free nucleic acid detection based on exponential hairpin assembly in complex biological fluids. Analyst 141:2883–2886

    Article  CAS  PubMed  Google Scholar 

  43. Chen J, Zhao Z, Chen Y et al (2018) Development and application of a SYBR green real-time PCR for detection of the emerging avian leukosis virus subgroup K. Poult Sci 97:2568–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alipour M, Jalili S, Shirzad H et al (2020) Development of dual-emission cluster of Ag atoms for genetically modified organisms detection. Mikrochim Acta 187:628

    Article  CAS  PubMed  Google Scholar 

  45. Yan-Fang T, Dong W, Li P et al (2012) Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Cancer Cell Int 12:40

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Shi Z, Hu A et al (2022) Rapid one-tube RPA-CRISPR/Cas12 detection platform for methicillin-resistant Staphylococcus aureus. Diagnostics (Basel) 12:829

  47. Bai L, Wang L, Huang S et al (2022) Rapid, visual, and sequence-specific detection of Salmonella in egg liquid with vis-NEAA, a CRISPR/Cas12 empowered new strategy. J Agric Food Chem 70:2401–2409

    Article  CAS  PubMed  Google Scholar 

  48. Shi Y, Kang L, Mu R et al (2022) CRISPR/Cas12a-enhanced loop-mediated isothermal amplification for the visual detection of Shigella flexneri. Front Bioeng Biotechnol 10:845688

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li C, Chen X, Wen R et al (2022) Immunocapture magnetic beads enhanced the LAMP-CRISPR/Cas12a method for the sensitive, specific, and visual detection of Campylobacter jejuni. Biosensors (Basel) 12:154

  50. Huang T, Shi Y, Zhang J et al (2021) Rapid and simultaneous detection of five, viable, foodborne pathogenic bacteria by photoinduced PMAxx-coupled multiplex PCR in fresh juice. Foodborne Pathog Dis 18:640–646

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (2018YFE0107500); Qin Chuangyuan recruited high-level innovation and entrepreneurship talents project of Science and Technology Department of Shaanxi Province (QCYRCXM-2022–56); Foreign expert service project of Science and Technology Department of Shaanxi Province (2023WGZJ-YB-39); Medical Research project of Xi'an Science and Technology Bureau (22YXYJ0120); the CAMS Initiative for Innovative Medicine (CAMS-2021-I2M-1–060); the Sichuan Science and Technology Program (2021YFH0100); Central government directed special funds for local science and technology development project (2021ZYD0085); and Sichuan Science and Technology Program (2021056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujia Li or Limin Chen.

Ethics declarations

Ethical approval

All animal studies were performed in accordance with the guidelines approved by the Institutional Ethics Review Committee of the Institute of Blood Transfusion, Chinese Academy of Medical Sciences, and Peking Union Medical College (No: 2022007).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5197 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Tan, Q., Gong, T. et al. Cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of Shigella flexneri. Microchim Acta 191, 271 (2024). https://doi.org/10.1007/s00604-024-06309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06309-0

Keywords

Navigation