Skip to main content
Log in

Mg2+- or Ca2+-regulated aptamer adsorption on polydopamine-coated magnetic nanoparticles for fluorescence detection of ochratoxin A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

It has been observed that polyvalent metal ions can mediate the adsorption of DNA on polydopamine (PDA) surfaces. Exploiting this, we used two divalent metal ions (Mg2+ or Ca2+) to promote the adsorption of fluorescence-labelled ochratoxin A (OTA) aptamers on PDA-coated magnetic nanoparticles (Fe3O4@PDA). Based on the different adsorption affinities of free aptamers and OTA-bound aptamers, a facile assay method was established for OTA detection. The aptamers adsorbed on Fe3O4@PDA were removed via simple magnetic separation, and the remaining aptamers in the supernatant exhibited a positive correlation with the OTA concentration. The concentrations of Mg2+ and Ca2+ were finely tuned to attain the optimal adsorption affinity and sensitivity for OTA detection. In addition, other factors, including the Fe3O4@PDA dosage, pH, mixing order, and incubation time, were studied. Finally, under optimized conditions, a detection limit (3σ/s) of 1.26 ng/mL was achieved for OTA. Real samples of spiked red wine were analysed with this aptamer-based method. This is the first report of regulating aptamer adsorption on the PDA surface with polyvalent metal ions for OTA detection. By changing the aptamers, the method can be easily extended to other target analytes. 

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Yu HX, Alkhamis O, Canoura J, Liu YZ, Xiao Y (2021) Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development. Angew Chem Int Ed 60:16800–16823. https://doi.org/10.1002/anie.202008663

    Article  CAS  Google Scholar 

  2. Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1:0076. https://doi.org/10.1038/s41570-017-0076

    Article  CAS  Google Scholar 

  3. Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ (2019) Perspective on the future role of aptamers in analytical chemistry. Anal Chem 91:15335–15344. https://doi.org/10.1021/acs.analchem.9b03853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430. https://doi.org/10.1126/science.1147241

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater 22:4711–4717. https://doi.org/10.1002/adfm.201201156

    Article  CAS  Google Scholar 

  6. Zandieh M, Hagar BM, Liu JW (2020) Interfacing DNA and polydopamine nanoparticles and its applications. Part Part Syst Charact 37:2000208. https://doi.org/10.1002/ppsc.202000208

    Article  CAS  Google Scholar 

  7. Meng YC, Liu P, Zhou WH, Ding JS, Liu JW (2018) Bioorthogonal DNA adsorption on polydopamine nanoparticles mediated by metal coordination for highly robust sensing in serum and living cells. ACS Nano 12:9070–9080. https://doi.org/10.1021/acsnano.8b03019

    Article  CAS  PubMed  Google Scholar 

  8. Zandieh M, Liu JW (2020) Transition metal-mediated DNA adsorption on polydopamine nanoparticles. Langmuir 36:3260–3267. https://doi.org/10.1021/acs.langmuir.0c00046

    Article  CAS  PubMed  Google Scholar 

  9. Zandieh M, Liu JW (2021) Metal-doped polydopamine nanoparticles for highly robust and efficient DNA adsorption and sensing. Langmuir 37:8953–8960. https://doi.org/10.1021/acs.langmuir.1c00783

    Article  CAS  PubMed  Google Scholar 

  10. Kushalkar MP, Liu BW, Liu JW (2020) Promoting DNA adsorption by acids and polyvalent cations: beyond charge screening. Langmuir 36:11183–11195. https://doi.org/10.1021/acs.langmuir.0c02122

    Article  CAS  PubMed  Google Scholar 

  11. Qiang WB, Li W, Li XQ, Chen X, Xu DK (2014) Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules. Chem Sci 5:3018–3024. https://doi.org/10.1039/c4sc00085d

    Article  CAS  Google Scholar 

  12. Qiang WB, Hu HT, Sun L, Li H, Xu DK (2015) Aptamer/polydopamine nanospheres nanocomplex for in situ molecular sensing in living cells. Anal Chem 87:12190–12196. https://doi.org/10.1021/acs.analchem.5b03075

    Article  CAS  PubMed  Google Scholar 

  13. Guo T, Wang CC, Zhou HY, Zhang YH, Ma L, Wang S (2021) A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin. Anal Methods 13:2654–2658. https://doi.org/10.1039/d1ay00642h

    Article  CAS  PubMed  Google Scholar 

  14. Liu Q, Pu ZH, Asiri AM, Al-Youbi AO, Sun XP (2014) Polydopamine nanospheres: A biopolymer-based fluorescent sensing platform for DNA detection. Sens Actuators B Chem 191:567–571. https://doi.org/10.1016/j.snb.2013.10.050

    Article  CAS  Google Scholar 

  15. Liu XJ, Lin BX, Yu Y, Cao YJ, Guo ML (2018) A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5’-triphosphate. Microchim Acta 185:243. https://doi.org/10.1007/s00604-018-2774-x

    Article  ADS  CAS  Google Scholar 

  16. Sun YJ, Wang CC, Tang LN, Zhang YL, Zhang GJ (2021) Magnetic-enhanced fluorescence sensing of tumor miRNA by combination of MNPs@PDA with duplex specific nuclease. RSC Adv 11:2968–2975. https://doi.org/10.1039/d0ra09237a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao XD, Zhang KR, Yan WW, Xia ZH, He SD, Xu X, Ye YK, Wei ZJ, Liu SQ (2020) Calcium ion assisted fluorescence determination of microRNA-167 using carbon dots-labeled probe DNA and polydopamine-coated Fe3O4 nanoparticles. Microchim Acta 187:212. https://doi.org/10.1007/s00604-020-4209-8

    Article  CAS  Google Scholar 

  18. Jiang HY, Xia Q, Liu DJ, Ling K (2020) Calcium-cation-doped polydopamine-modified 2D black phosphorus nanosheets as a robust platform for sensitive and specific biomolecule sensing. Anal Chim Acta 1121:1–10. https://doi.org/10.1016/j.aca.2020.04.072

    Article  CAS  PubMed  Google Scholar 

  19. Alhamoud Y, Yang DT, Fiati Kenston SS, Liu GZ, Liu LY, Zhou HB, Ahmed F, Zhao JS (2019) Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 141:111418. https://doi.org/10.1016/j.bios.2019.111418

    Article  CAS  PubMed  Google Scholar 

  20. Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99. https://doi.org/10.1002/mnfr.200600137

    Article  PubMed  Google Scholar 

  21. Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F (2023) Recent advances in nanomaterial-based optical biosensors for food safety applications: ochratoxin-A detection, as case study. Crit Rev Food Sci Nutr 1–43. https://doi.org/10.1080/10408398.2023.2168248

  22. Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56:10456–10461. https://doi.org/10.1021/jf801957h

    Article  CAS  PubMed  Google Scholar 

  23. Geng X, Zhang DP, Wang HL, Zhao Q (2013) Screening interaction between ochratoxin A and aptamers by fluorescence anisotropy approach. Anal Bioanal Chem 405:2443–2449. https://doi.org/10.1007/s00216-013-6736-1

    Article  CAS  PubMed  Google Scholar 

  24. Xu GH, Zhao JJ, Yu H, Wang C, Huang YY, Zhao Q, Zhou X, Li CG, Liu ML (2022) Structural insights into the mechanism of high-affinity binding of ochratoxin A by a DNA aptamer. J Am Chem Soc 144:7731–7740. https://doi.org/10.1021/jacs.2c00478

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879. https://doi.org/10.1002/anie.200901566

    Article  CAS  Google Scholar 

  26. Yang C, Lates V, Prieto-Simon B, Marty JL, Yang XR (2012) Aptamer-DNAzyme hairpins for biosensing of ochratoxin A. Biosens Bioelectron 32:208–212. https://doi.org/10.1016/j.bios.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  27. Yang C, Lates V, Prieto-Simon B, Marty JL, Yang XR (2013) Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Talanta 116:520–526. https://doi.org/10.1016/j.talanta.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  28. Sheng DH, Ying XT, Li R, Cheng SY, Zhang C, Dong W, Pan XH (2022) Polydopamine-mediated modification of ZIF-8 onto magnetic nanoparticles for enhanced tetracycline adsorption from wastewater. Chemosphere 308:136249. https://doi.org/10.1016/j.chemosphere.2022.136249

    Article  CAS  PubMed  Google Scholar 

  29. Pan XH, Cheng SY, Su T, Zuo GC, Zhang C, Wu LP, Jiao YZ, Dong W (2019) Poly (2-hydroxypropylene imines) functionalized magnetic polydopamine nanoparticles for high-efficiency DNA isolation. Appl Surf Sci 498:143888. https://doi.org/10.1016/j.apsusc.2019.143888

    Article  CAS  Google Scholar 

  30. Yang W, Liu C, Chen Y (2018) Stability of polydopamine coatings on gold substrates inspected by surface plasmon resonance imaging. Langmuir 34:3565–3571. https://doi.org/10.1021/acs.langmuir.7b03143

    Article  CAS  PubMed  Google Scholar 

  31. Yang C, Wang Y, Marty J-L, Yang XR (2011) Aptamer-based colorimetric biosensing of ochratoxin A using unmodified gold nanoparticles indicator. Biosens and Bioelectron 26:2724–2727. https://doi.org/10.1016/j.bios.2010.09.032

    Article  CAS  Google Scholar 

  32. Duan N, Ren KX, Song MQ, Zhang XY, Wang ZP, Jia F, Wu SJ (2023) A dual-donor FRET based aptamer sensor for simultaneous determination of histamine and tyramine in fishes. Microchem J 191:108801. https://doi.org/10.1016/j.microc.2023.108801

    Article  CAS  Google Scholar 

  33. He Y, Lin Y, Tang HW, Pang DW (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4:2054–2059. https://doi.org/10.1039/c2nr12061e

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the CAS scientific instruments and equipment development program (Grant: YJKYYQ20200008) and the AI S&T Program of Yulin Branch, Dalian National Laboratory for Clean Energy, CAS (Grant No. DNL-YL A202203).

Author information

Authors and Affiliations

Authors

Contributions

Wei Yang: Conceptualization, Methodology, Validation, Investigation, Visualization, Writing-Original Draft. Lanxiu Ni: Investigation, Validation. Mingzhen Zhu: Methodology, Investigation. Xiaobo Zhang: Methodology, Investigation. Liang Feng: Supervision, Writing-Review&Editing, Project administration, Funding acquisition.

Corresponding author

Correspondence to Liang Feng.

Ethics declarations

Ethical approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 810 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Ni, L., Zhu, M. et al. Mg2+- or Ca2+-regulated aptamer adsorption on polydopamine-coated magnetic nanoparticles for fluorescence detection of ochratoxin A. Microchim Acta 191, 157 (2024). https://doi.org/10.1007/s00604-024-06252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06252-0

Keywords

Navigation