Skip to main content
Log in

A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5’-triphosphate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A multifunctional fluorescent probe is synthesized for the determination of adenosine 5′-triphosphate (ATP). The 6-carboxyfluorescein-labeled aptamer (FAM-aptamer) was bound to the surface of magnetite nanoparticles coated with polydopamine (Fe3O4@PDA) by π-π stacking interaction to form the multifunctional probe. The probe has three functions including recognition, magnetic separation, and yielding a fluorescent signal. In the presence of ATP, FAM-aptamer on the surface of the probe binds to ATP and returns to the solution. Thus, the fluorescence of the supernatant is enhanced and can be related to the concentration of ATP. Fluorescence intensities were measured at excitation/emission wavelengths of 494/526 nm. Response is linear in the 0.1–100 μM ATP concentration range, and the detection limit is 89 nM. The probe was applied to the quantitation of ATP in spiked human urine and serum samples, with recoveries ranging between 94.8 and 102%.

A multifunctional fluorescent probe based on the use of FAM-aptamer and Fe3O4@PDA is described for the determination of ATP in spiked human urine and serum samples. FAM-aptamer: 6-carboxyfluorescein-labeled aptamer; Fe3O4@PDA: magnetite nanoparticles coated with polydopamine. ATP: adenosine 5′-triphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma N, Jiang WT, Li T, Zhang ZQ, Qi HZ, Yang MH (2015) Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim Acta 182:443–447. https://doi.org/10.1007/s00604-014-1386-3

    Article  CAS  Google Scholar 

  2. Wu H, Liu RJ, Kang XJ, Liang CY, Lv L, Guo ZJ (2018) Fluorometric aptamer assay for ochratoxin a based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185:27. https://doi.org/10.1007/s00604-017-2592-6

    Article  Google Scholar 

  3. Rasheed T, Bilal M, Nabeel F, Iqbal HMN, Li CL, Zhou YF (2018) Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ 615:476–485. https://doi.org/10.1016/j.scitotenv.2017.09.126

    Article  CAS  Google Scholar 

  4. Liu ZP, Li GD, Xia TT, Su XG (2015) Ultrasensitive fluorescent nanosensor for arsenate assay and removal using oligonucleotide-functionalized CuInS2 quantum dot@magnetic Fe3O4 nanoparticles composite. Sens Actuators B Chem 220:1205–1211. https://doi.org/10.1016/j.snb.2015.06.111

    Article  CAS  Google Scholar 

  5. Zheng P, Wu NQ (2017) Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem Asian J 12:2343–2353. https://doi.org/10.1002/asia.201700814

    Article  CAS  Google Scholar 

  6. Ma H, Liu XY, Wang XD, Li XR, Yang CD, Iqbal A, Liu WS, Li JP, Qin WW (2017) Sensitive fluorescent light-up probe for enzymatic determination of glucose using carbon dots modified with MnO2 nanosheets. Microchim Acta 184:177–185. https://doi.org/10.1007/s00604-016-2004-3

    Article  CAS  Google Scholar 

  7. Na WD, Liu XT, Pang S, Su XG (2015) Highly sensitive detection of 2,4,6-trinitrophenol (TNP) based on lysozyme capped CdS quantum dots. RSC Adv 5:51428–51434. https://doi.org/10.1039/C5RA06101F

    Article  CAS  Google Scholar 

  8. Zhang HJ, Chen YL, Liang MJ, Xu LF, Qi SD, Chen HL, Chen XG (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86:9846–9852. https://doi.org/10.1021/ac502446m

    Article  CAS  Google Scholar 

  9. Sun YQ, Wang XJ, Wang C, Tong DY, Wang Q, Jiang KL, Jiang YN, Wang CX, Yang MH (2018) Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185:83. https://doi.org/10.1007/s00604-017-2544-1

    Article  Google Scholar 

  10. Yang ZJ, Liu H, Zong C, Yan F, Ju HX (2009) Automated support-resolution strategy for a one-way chemiluminescent multiplex immunoassay. Anal Chem 81:5484–5489. https://doi.org/10.1021/ac900724m

    Article  CAS  Google Scholar 

  11. Lin ZH, Fei XF, Ma Q, Gao X, Su XG (2014) CuInS2 quantum dots@silica near-infrared fluorescent nanoprobe for cell imaging. New J Chem 38:90–96. https://doi.org/10.1039/C3NJ00957B

    Article  CAS  Google Scholar 

  12. Liu JH, Wang CY, Jiang Y, Hu YP, Li JS, Yang S, Li YH, Yang RG, Tan WH, Huang CZ (2013) Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules. Anal Chem 85:1424–1430. https://doi.org/10.1021/ac3023982

    Article  CAS  Google Scholar 

  13. Jia L, Ding L, Tian JW, Bao L, Hu YP, Ju HX, Yu JS (2015) Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nano 7:15953–15961. https://doi.org/10.1039/C5NR02224J

    CAS  Google Scholar 

  14. Lin BX, Yu Y, Li RY, Cao YJ, Guo ML (2016) Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sens Actuators B Chem 229:100–109. https://doi.org/10.1016/j.snb.2016.01.114

    Article  CAS  Google Scholar 

  15. Zhang K, Mei QS, Guan GJ, Liu B, Wang SH, Zhang ZP (2010) Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Anal Chem 82:9579–9586. https://doi.org/10.1021/ac102531z

    Article  CAS  Google Scholar 

  16. Liang YZ, Yu Y, Cao YJ, Hu XG, Wu JZ, Wang WJ, Finlow DE (2010) Recognition of DNA based on changes in the fluorescence intensity of CdSe/CD QDs-phenanthroline systems. Spectrochimca Acta Part A 75:1617–1623. https://doi.org/10.1016/j.saa.2010.02.030

    Article  Google Scholar 

  17. Liu QL, Xu SH, Niu CX, Li MF, He DC, Lu ZL, Ma L, Na N, Huang F, Jiang H, Ouyang J (2015) Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens Bioelectron 64:119–125. https://doi.org/10.1016/j.bios.2014.08.052

    Article  CAS  Google Scholar 

  18. Zhou LN, Cao YJ, Lin BX, Song SS, Yu Y, Shui LL (2017) In-situ visual and ultrasensitive detection of phosmet using a fluorescent immunoassay probe. Sens Actuators B Chem 241:915–922. https://doi.org/10.1016/j.snb.2016.10.058

    Article  CAS  Google Scholar 

  19. Wang D, Lin BX, Cao YJ, Guo ML, Yu Y (2016) A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. J Agric Food Chem 64:6042–6050. https://doi.org/10.1021/acs.jafc.6b01088

    Article  CAS  Google Scholar 

  20. Li N, Hao X, Kang BH, Xu Z, Shi Y, Li NB, Luo HQ (2016) Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification. Biosens Bioelectron 77:525–529. https://doi.org/10.1016/j.bios.2015.10.004

    Article  CAS  Google Scholar 

  21. Wang JF, Liu ZM, Zhou ZM (2017) Improving pullulanase catalysis via reversible immobilization on modified Fe3O4@polydopamine nanoparticles. Appl Biochem Biotechnol 182:1467–1477. https://doi.org/10.1007/s12010-017-2411-x

    Article  CAS  Google Scholar 

  22. Su XX, Wang MY, Ouyang H, Yang SJ, Wang WW, He Y, Fu ZF (2017) Bioluminescent detection of the total amount of viable gram-positive bacteria isolated by vancomycin-functionalized magnetic particles. Sens Actuators B Chem 241:255–261. https://doi.org/10.1016/j.snb.2016.10.042

    Article  CAS  Google Scholar 

  23. Xie YJ, Yan B, Xu HL, Chen J, Liu QX, Deng YH, Zeng HB (2014) Highly regenerable mussel-inspired Fe3O4@polydopamine-ag core-shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl Mater Interfaces 6:8845–8852. https://doi.org/10.1021/am501632f

    Article  CAS  Google Scholar 

  24. Shi FP, Li Y, Lin ZH, Ma DX, Su XG (2015) A novel fluorescent probe for adenosine 5′-triphosphate detection based on Zn2+-modulated l-cysteine capped CdTe quantum dots. Sens Actuators B Chem 220:433–440. https://doi.org/10.1016/j.snb.2015.05.087

    Article  CAS  Google Scholar 

  25. Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ (2016) A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 78:315–320. https://doi.org/10.1016/j.bios.2015.11.043

    Article  CAS  Google Scholar 

  26. He YF, Liao LF, Xu CH, Wu RR, Li SJ, Yang YY (2015) Determination of ATP by resonance light scattering usinga binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes. Microchim Acta 182:419–426. https://doi.org/10.1007/s00604-014-1350-2

    Article  CAS  Google Scholar 

  27. Zhou ZM, Yu Y, Zhao YD (2012) A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst 137:4262–4266. https://doi.org/10.1039/C2AN35520E

    Article  CAS  Google Scholar 

  28. Liu XQ, Freeman R, Willner I (2012) Amplified fluorescence aptamer-based sensors using exonuclease III for the regeneration of the analyte. Chem Eur J 18:2207–2211. https://doi.org/10.1002/chem.201103342

    Article  CAS  Google Scholar 

  29. Wang YM, Liu JW, Duan LY, Liu SJ, Jiang JH (2017) Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Microchim Acta 184:4183–4188. https://doi.org/10.1007/s00604-017-2337-6

    Article  CAS  Google Scholar 

  30. Ning Y, Wei K, Cheng LJ, Hu J, Xiang Q (2017) Fluorometric aptamer based determination of adenosine triphosphate based on deoxyribonuclease I-aided target recycling and signal amplification using graphene oxide as a quencher. Microchim Acta 184:1847–1854. https://doi.org/10.1007/s00604-017-2194-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575043, 21275056, 21605052, 51478196); and the Platform Construction Project of Guangzhou Science Technology and Innovation Commission (No. 15180001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lin, B., Yu, Y. et al. A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5’-triphosphate. Microchim Acta 185, 243 (2018). https://doi.org/10.1007/s00604-018-2774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2774-x

Keywords

Navigation