Skip to main content
Log in

Electrochemiluminescent assay based on Co-MOF and TiO2 for determination of bisphenol A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemiluminescence (ECL) sensor for determining bisphenol A (BPA) was prepared based on titanium dioxide (TiO2) and Co-MOF. TiO2 is a co-reaction promoter that amplifies the ECL signal in the Ru(bpy)32+-trinpropylamine (TPrA) system. When the electrode is modified with Co-MOF the ECL signal is significantly enhanced. This is because Co-MOF can not only be used as a co-reaction accelerator but also as a carrier to adsorb more luminescent substances. Possible mechanisms for amplifying the original signal through the synergistic action of the two substances are investigated. The ECL strength decreases with increasing concentrations of BPA, and the amount of BPA can be determined by the change in ECL signal strength (ΔI). Under optimal experimental conditions, the linear range of BPA was 2.0 × 10−10 to 2.0 × 10−5 M, with a determination limit of 6.7 × 10−11 M (3σ/m). The relative standard deviation (RSD) of the signal for ten consecutive measurements was 1.5%. The sensor can be used to detect BPA in bottled samples with recoveries of 96 to 105%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The date underlying this article cannot be shared publicly due to the privacy of individuals that participated in the study. The date will be sharded on reasonable requests to the corresponding author.

References

  1. Chai JY, Yu XR, Zhao J, Sun AL, Shi XZ, Li DX (2018) An electrochemiluminescence sensor based on Nafion/magnetic Fe3O4 nanocrystals modified electrode for the determination of bisphenol A in environmental water samples. Sensor Actuat B: Chem 18(8):2537–2548. https://doi.org/10.3390/s18082537

    Article  CAS  Google Scholar 

  2. Li JY, Ma Y, Zeng Q, Wang M, Wang LS (2020) An electropolymerized molecularly imprinted electrochemical sensor for the selective determination of bisphenol A diglycidyl ether. Chem Select 5(12):3574–3580. https://doi.org/10.1002/slct.202000230

    Article  CAS  Google Scholar 

  3. Sun FX, Kang LC, Xiang XL, Li HM (2016) Recent advances and progress in the detection of bisphenol A. Anal Bioanal Chem 408(25):6913–6927. https://doi.org/10.1007/s00216-016-9791-6

    Article  CAS  PubMed  Google Scholar 

  4. Zhang XP, Wang JJ, Wu QH (2019) Determination of kanamycin by high performance liquid chromatography. Molecules 24(10):1902–1910. https://doi.org/10.3390/molecules24101902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mousavizadegan M, Azimzadeh Asiabi P, Hosseini M (2020) Synthesis of magnetic silk nanostructures with peroxidase-lake activity as an approach for the detection of glucose. Chem Select 5(27):8093–8098. https://doi.org/10.1002/slct.202002136

    Article  CAS  Google Scholar 

  6. Ohno E, Miyafuji H (2014) Production of disaccharides from glucose by treatment with an ionic liquid, 1-ethy1-3-methylimidozolium chloride. J Wood 61(2):165–170. https://doi.org/10.1007/s10086-014-1453-8

    Article  CAS  Google Scholar 

  7. Chiu WT, Mark CT, Masato S, Hiroshi T (2020) Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensin of glucose. Talanta 212:120780. https://doi.org/10.1016/j.talanta.2020.120780

    Article  CAS  PubMed  Google Scholar 

  8. Li JX, Shan XL, Jiang D, Wang WC (2020) An electrochemiluminescence aptasensor based on Ru(bpy)32+ encapsulated titanium-MIL-125 metal-organic framework for bisphenol A assay. Microchim Acta 187(4): 227–335. https://doi.org/10.1007/s00604-020-4210-2

  9. Mohammad AK, Mohsen M (2021) A new promising electrochemiluminescence probe based on ruthenium nanobeads/silver nanoparticles/graphene oxide modified electrode for ultra-trace analysis of bisphenol A. J Appl Electrochem 51(10):1371–1385. https://doi.org/10.1007/s10800-021-01578-6

    Article  CAS  Google Scholar 

  10. Han YQ, Fang YF, Ding XT (2020) A simple and effective flexible electrochemiluminescence sensor for lidocaine detection. Electrochem Commun 116:106760. https://doi.org/10.1016/j.elecom.2020.106760

    Article  CAS  Google Scholar 

  11. Chen Y, Wang J, Liu ZM, Wang XA, Li X (2018) A simple and versatile paper-based electrochemiluminescence biosensing platform for hepatitis B virus surface antigen detection. Biochem Eng J 129:1–6. https://doi.org/10.1016/j.bej.2017.10.012

    Article  CAS  Google Scholar 

  12. He H.B, Li R, Yang ZH, Chai LY, Jin LF (2020) Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: a review. Catal Today 410083. https://doi.org/10.1016/j.cattod.2020.02.033

  13. Kan L, Li G, Liu Y (2020) Highly selective separation of C3H8 and C2H2 from CH4 within two water-stable Zn5 cluster-based metal-organic frameworks. ACS Appl Mater Interfaces 12(16):18642–18649. https://doi.org/10.1021/acsami.0c04538

    Article  CAS  PubMed  Google Scholar 

  14. Ribeiro RP, Barreto J, Xavier MDG, Martins D, Esteves IAAC, Blanc TT (2020) Cryogenic neon adsorption on Co3(ndc)3(dabco) metal-organic framework. Micropor Mesopol Mat 298:110055. https://doi.org/10.1016/j.micromeso.2020.110055

    Article  CAS  Google Scholar 

  15. Varnaseri N, Ramazani A, Mosali A, Rouhani F (2020) Pore wall functionalized ultrasonically synthesized cooperative MOF for luminescence sensing 2,4,6-trinitrophenol. Solid State Chem 291:121622. https://doi.org/10.1016/j.jssc.2020.121622

    Article  CAS  Google Scholar 

  16. Shu Y, Yan Y, Chen JY, Xu Q, Pang H, Hu XY (2017) Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interface 9(27):22342–22349. https://doi.org/10.1021/acsami.7b07501

    Article  CAS  Google Scholar 

  17. Chen JY, Xu Q, Shu Y, Hu XY (2018) Synthesis of a novel Au nanoparticies decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 184:136–142. https://doi.org/10.1016/j.talanta.2018.02.057

    Article  CAS  PubMed  Google Scholar 

  18. Li F, Wang MH, Zhou YL (2021) Electrochemiluminescence biosensor for microRNA determination based on AgNCs@MoS2 composite with (AuNPs-Semicarbazide) @Cu-MOF as coreaction accelerator. Microchim Acta 188:68–88. https://doi.org/10.1007/s00604-020-04678-w

    Article  CAS  ADS  Google Scholar 

  19. Tang TT, Wang LN (2020) A sandwich electrochemiluminescent assay for determinationof concanavalin A with triple signal amplification based on MoS2NF@MWCNTs modified electrode and Zn-MOF encapsulated luminol. Microchim Acta 187:523–534. https://doi.org/10.1007/s00604-020-04472-8

    Article  CAS  Google Scholar 

  20. Lu J, Sun Z, Zhang X, Shan XY (2022) Electrospun nanofibers modified with Ni-MOF for electrochemiluminescence determination of glucose. Microchem J 180:107623. https://doi.org/10.1016/j.microc.2022.107623

    Article  CAS  Google Scholar 

  21. Wang YX, Chen R, Shen B, Li C, Chen JM, Wang YS (2022) Electrochemiluminescent (ECL) biosensor for Burkholderia pseudomallei based on cobalt-doped MOF decorated with gold nanoparticles and N-(4-aminobutyl)-N-(ethylisoluminol). Microchim Acta 355. https://doi.org/10.1007/s00604-022-05402-6

  22. Wang SS, Wang MM, Li CP (2020) A highly sensitive and stable electrochemiluminescence immunosensor for alpha-fetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers. Sensor Actuat B-Chem 311:127919. https://doi.org/10.1016/j.snb.2020.127919

    Article  CAS  Google Scholar 

  23. Chan WC, Sun N (2016) Quantum dot bio conjugates for ultra-sensitive nonisotopic detection. Science 281:5385. https://doi.org/10.1126/science.281.5385.2016

    Article  Google Scholar 

  24. Trapalis CC, Keivanidis P, Kordas G (2003) TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 433:186–190. https://doi.org/10.1016/s0040-6090(03)00331-6

    Article  CAS  ADS  Google Scholar 

  25. Yu LL, Cao J, Li XJ, Zhang XY (2016) A novel molecularly imprinted electrochemiluminescence sensor based on a Ru(bpy)32+/MWCNTs/nano-TiO2-Nafion electrode for the detection of bisphenol A. Anal Methods 8(41):7445–7452. https://doi.org/10.1039/c6ay02087a

    Article  Google Scholar 

  26. Cao HX, Wang L, Pan CG, He YS, Liang GX (2018) Aptamer based electrochemiluminescent determination of bisphenol A by using carboxylated graphitic carbon nitride. Microchim Acta 185(10). https://doi.org/10.1007/s00604-018-2997-x

  27. Guo XF, Wu SJ, Duan N, Wang ZP (2016) Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Anal Bioanal Chem 408(14):3823–3831. https://doi.org/10.1007/s00216-016-9470-7

    Article  CAS  PubMed  Google Scholar 

  28. Liu XH, Luo LJ, Li LB, Di ZX, Zhang JY, You TY (2019) Electrochim Acta 319:849–858. https://doi.org/10.1016/j.electacta.2019.07.035

    Article  CAS  Google Scholar 

  29. Li LB, Yu B, Zhang XP, You TY (2015) A novel electrochemiluminescence sensor based on Ru(bpy)32+/N-doped carbon nanodots system for the detection of bisphenol A. Anal Chim Acta 895:104–111. https://doi.org/10.1016/j.aca.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  30. Cai GN, Yu ZZ, Tang DP (2020) Actuating photoelectrochemical sensing sensitivity coupling core-core-shell Fe3O4@C@TiO2 with molecularly imprinted polypyrrole. Talanta 121341. https://doi.org/10.1016/j.talanta.2020.121341

Download references

Acknowledgements

We gratefully acknowledge the financial support by the Jilin Natural Science Foundation (YDZJ202201ZYTS663).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Tian or Lun Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6577 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Tian, L., Song, G. et al. Electrochemiluminescent assay based on Co-MOF and TiO2 for determination of bisphenol A. Microchim Acta 191, 142 (2024). https://doi.org/10.1007/s00604-024-06216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06216-4

Keywords

Navigation