Skip to main content
Log in

A comparison on the performance of zinc oxide and hematite nanoparticles for highly selective and sensitive detection of para-nitrophenol

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

ZnO and hematite (Fe2O3) nanoparticles (NPs) have been used as electrocatalysts or electron mediators for the modification of gold (Au) electrode for the detection of toxic compounds, i.e., para-nitrophenol (PNP). A comparison of the two types of NPs reveals higher efficiency for ZnO NPs. Electrochemical response measured by three different techniques, i.e., normal cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry, has been used to determine the sensitivity and detection limit of the system. The order of sensitivity varies in the order: amperometry > DPV > normal CV response, both for ZnO and α-Fe2O3 NPs. While, the order of detection limit for α-Fe2O3 NPs varies as DPV > normal CV > amperometry and for ZnO NPs, the order is normal CV > DPV > amperometry, suggesting that amperometry is the best among all the techniques for detection applications. Based on the electrochemical response, it is proposed that the electrochemical reaction of PNP proceeds via two-step mechanism. In the first step, irreversible reduction of PNP to para-hydroxy nitrophenol takes place with the gain of four electrons and in the second step, reversible redox reaction occurs by the exchange of two electrons, from hydroxy nitrophenol to nitrosophenol and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo X, Wang Z, Zhou S (2004) The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 64:135–139

    Article  CAS  Google Scholar 

  2. Podeh MRH, Bhattacharya SK, Qu M (1995) Effects of nitrophenols on acetate utilizing methanogenic systems. Water Res 29:391–399

    Article  CAS  Google Scholar 

  3. L-Kochany E (1991) Degradation of aqueous nitrophenols and nitrobenzene by means of fenton reaction. Chemosphere 22:529–536

    Article  Google Scholar 

  4. Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169:87–92

    Article  CAS  Google Scholar 

  5. Castillo M, Domingues R, Alpendurada MF, Barcelo D (1997) Persistence of selected pesticides and their phenolic transformation products in natural waters using off-line liquid solid extraction followed by liquid chromatographic techniques. Anal Chim Acta 353:133–142

    Article  CAS  Google Scholar 

  6. Niazi A, Yazdanipour A (2007) Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares. J Hazard Mater 146:421–427

    Article  CAS  Google Scholar 

  7. Padilla-Sánchez JA, Plaza-Bolaňos P, Romero-González R, Garrido-Frenich A, Vidal JLM (2010) Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography–triple quadrupole-mass spectrometry/mass spectrometry. J Chromatogr A 1217:5724–5731

    Article  Google Scholar 

  8. Zhang W, Wilson CR (2008) Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate. Talanta 74:1400–1407

    Article  CAS  Google Scholar 

  9. Abaker M, Dar GN, Umar A, Zaidi SA, Ibrahim AA, Baskoutas S, Al-Hajry A (2012) CuO nanocubes based highly-sensitive 4-nitrophenol chemical sensor. Sci Adv Mater 4:893–900

    Article  CAS  Google Scholar 

  10. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201:250–259

    Article  Google Scholar 

  11. Bodewig F, Valenta P, Nurnberg H (1982) Trace determination of As(II) and As(V) in natural waters by differential pulse anodic stripping voltammetry. Fres Z Anal Chem 311:187–191

    Article  CAS  Google Scholar 

  12. Lindsay AE, O’ Hare D (2006) The development of an electrochemical sensor for the determination of cyanide in physiological solutions. Anal Chim Acta 558:158–163

    Article  CAS  Google Scholar 

  13. Gil EP, Ostapczuk P (1994) Potentiometric stripping determination of mercury(II), selenium(IV), copper(II) and lead(II) at a gold film electrode in water samples. Anal Chim Acta 293:55–65

    Article  CAS  Google Scholar 

  14. Wu Y, Wu A (2000) Taguchi methods for robust design. ASME, New York

    Google Scholar 

  15. Liu J, Chen Y, Guo Y, Yang F, Cheng F (2013) Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets. J Nanomater 2013

  16. Tang Y, Huang R, Liu C, Yang LS, Lu ZZ, Luo S (2013) Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with reduced graphene oxide/Au nanoparticle composite. Anal Methods 5:5508–5514

    Article  CAS  Google Scholar 

  17. Chu L, Han L, Zhang X (2011) Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J Appl Electrochem 41:687–694

    Article  CAS  Google Scholar 

  18. Niaz A, Fischer J, Barek J, Yosypchuk B, Sirajuddin, Bhanger MI (2009) Voltammetric determination of 4-nitrophenol using a novel type of silver amalgam paste electrode. Electroanalysis 21:1786–1791

    Article  CAS  Google Scholar 

  19. Casella IG, Contursi M (2007) The electrochemical reduction of nitrophenols on silver globular particles electrodeposited under pulsed potential conditions. J Electrochem Soc 154:D697–D702

    Article  CAS  Google Scholar 

  20. Sun W, Yang MX, Jiang Q, Jiao K (2008) Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin Chem Lett 19:1156–1158

    Article  CAS  Google Scholar 

  21. Xiong H-M (2013) ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater 25:5329–5335

    Article  CAS  Google Scholar 

  22. Xu G, Yang L, Zhong M, Li C, Lu X, Kan X (2013) Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles. Microchim Acta 180:1461–1469

    Article  CAS  Google Scholar 

  23. Li S, Du D, Huang J, Tu H, Yang Y, Zhang A (2013) One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst 138:2761–2768

    Article  CAS  Google Scholar 

  24. Yi Q, Yu W (2009) Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation. Microchim Acta 165:381–386

    Article  CAS  Google Scholar 

  25. Kurniawan F, Tsakov V, Mirsky VM (2006) Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis 18:1937–1942

    Article  CAS  Google Scholar 

  26. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  27. Sun Y, Buck H, Mallouk TE (2001) Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal Chem 73:1599–1604

    Article  CAS  Google Scholar 

  28. Umar A, Hahn YB (2010) Metal oxide nanostructures and their applications. American Scientific Publisher, US

    Google Scholar 

  29. Baskoutas S, Bester G (2011) Transition in the optical emission polarization of ZnO nanorods. J Phys Chem C 115:15862–15867

    Article  CAS  Google Scholar 

  30. Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Poulopoulos P, Yannopoulos SN (2011) Synthesis and characterization of ZnO/NiO pn heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonic Nanostruct 9:132–139

    Article  Google Scholar 

  31. Baskoutas S, Bester G (2010) Conventional optics from unconventional electronics in ZnO quantum dots. J Phys Chem C 114:9301–9307

    Article  CAS  Google Scholar 

  32. Fu YY, Wang RM, Xu J, Chen J, Yan Y, Narlikar AV, Zhang H (2003) Synthesis of large arrays of aligned a-Fe2O3 nanowires. Chem Phys Lett 379:373–379

    Article  CAS  Google Scholar 

  33. Archibald DD, Mann S (1993) Template mineralization of self assembled anisotropic lipid microstructures. Nature 364:430–433

    Article  CAS  Google Scholar 

  34. Wang S-B, Min Y-L, Yu S-H (2007) Synthesis and magnetic properties of uniform hematite nanocubes. J Phys Chem C 111:3551–3554

    Article  CAS  Google Scholar 

  35. Cao X, Wang N (2011) A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136:4241–4246

    Article  CAS  Google Scholar 

  36. Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron(III) oxide nanoparticles platform. Sensor Actuat B-Chem 148:93–102

    Article  CAS  Google Scholar 

  37. Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407

    Article  CAS  Google Scholar 

  38. Yu C, Guo J, Gu H (2010) Electrocatalytical oxidation of nitrite and its determination based on Au@Fe3O4 nanoparticles. Electroanalysis 22:1005–1011

    Article  CAS  Google Scholar 

  39. Khan SB, Rahman MM, Akhtar K, Asiri AM, Rub MA (2014) Nitrophenol chemi-sensor and active solar photocatalyst based on spinel hetaerolite nanoparticles. PLoS ONE 9(1):e85290. doi:10.1371/journal.pone.0085290

    Article  Google Scholar 

  40. Hu YF, Zhang ZH, Zhang HB, Luo LJ, Yao SZ (2012) Sensitive and selective imprinted electrochemical sensor for p-nitrophenol based on ZnO nanoparticles/carbon nanotubes doped chitosan film. Thin Solid Films 520:5314–5321

    Article  CAS  Google Scholar 

  41. Mehta SK, Singh K, Umar A, Chaudhary GR, Singh S (2011) Well-crystalline-Fe2O3 nanoparticles for hydrazine chemical sensor application. Sci Adv Mater 3:962–967

    Article  CAS  Google Scholar 

  42. Mehta SK, Singh K, Umar A, Chaudhary GR, Singh S (2012) Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. Electrochim Acta 69:128–133

    Article  CAS  Google Scholar 

  43. Takeuchi ES, Murray RW (1985) Metalloporphyrin containing carbon paste electrodes. J Electroanal Chem 189:49–57

    Article  Google Scholar 

  44. Yaghoubian H, Karimi-Maleh H, Khalilzadeh MA, Karimi F (2009) Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode. J Serb Chem Soc 74:1443–1453

    Article  CAS  Google Scholar 

  45. Soderberg JN, Co AC, Sirk AHC, Birss VI (2006) Impact of porous electrode properties on the electrochemical transfer coefficient. J Phys Chem B 110:10401–10410

    Article  CAS  Google Scholar 

  46. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  47. Yogeswaran U, Chen S-M (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313

    Article  CAS  Google Scholar 

  48. Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11:1365–1368

    Article  CAS  Google Scholar 

  49. Ndlovu T, Arotiba OA, Krause RW, Mamba BB (2010) Electrochemical detection of o-nitrophenol on a poly(propyleneimine)-gold nanocomposite modified glassy carbon electrode. Int J Electrochem Sci 5:1179–1186

    CAS  Google Scholar 

  50. Umar A, Rahman MM, Hahn Y-B (2009) Ultra-sensitive hydrazine chemical sensor based on high-aspect ratio ZnO nanowires. Talanta 77:1376–1380

    Article  CAS  Google Scholar 

  51. Topoglidis E, Cass AEG, O’Regan B, Durrant JR (2001) Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem 517:20–27

    Article  CAS  Google Scholar 

  52. Arcinte A, Mahosenaho M, Pinteala M, Sesay A-M, Virtanen V (2011) Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim Acta 174:337–343

    Article  Google Scholar 

  53. Roy AC, Nisha VS, Dhand C, Ali MA, Malhotra BD (2013) Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection. Anal Chim Acta 777:63–71

    Article  CAS  Google Scholar 

  54. Zhang WB, Chang JL, Chen JH, Xu F, Wang F, Jiang K, Gao ZY (2012) Graphene–Au composite sensor for electrochemical detection of para-nitrophenol. Res Chem Intermed 38:2443–2455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KS and SKM are thankful to Council of Scientific and industrial research (CSIR), India for their financial assistance and fellowships. KS is thankful to Central Instrumental Laboratory (CIL), Panjab University, Chandigarh, India for TEM and XRD measurements. We also thank DST, Govt. of India for financial support under PURSE Grant Phase-II to Panjab University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mehta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10800_2014_762_MOESM1_ESM.docx

Supplementary material 1 (DOCX 382 kb) Appendix A. Supplementary data Supplementary data associated with this article can be found in the online version

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Kaur, A., Umar, A. et al. A comparison on the performance of zinc oxide and hematite nanoparticles for highly selective and sensitive detection of para-nitrophenol. J Appl Electrochem 45, 253–261 (2015). https://doi.org/10.1007/s10800-014-0762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0762-3

Keywords

Navigation