Skip to main content
Log in

Fluorimetric determination of tetracycline antibiotics in animal derived foods using boron and nitrogen co-doped ceria-based nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An innovative synthesis of boron and nitrogen co-doped ceria-based nanoparticles (B/N-CeFNPs) with bright blue fluorescence emission is reported using the hydrothermal method. Based on the aggregation-induced emission enhancement (AIEE) effect between B/N-CeFNPs and chlortetracycline (CTC), a rapid detection method for CTC through fluorescence enhancement was developed. In addition, through the electron transfer process (ET), fluorescence resonance energy transfer (FRET) effect and static quenching between B/N-CeFNPs and oxytetracycline (OTC), a ratio fluorescence strategy for detecting OTC was generated. The fluorescence of B/N-CeFNPs at 410 nm can be effectively quenched by OTC, and new fluorescence emission appears at a wavelength of 500 nm. B/N-CeFNPs showed good linear responses with CTC and OTC in the range 0.1-1 µM and 1-40 µM, respectively. This system was used to simultaneously detect the CTC and OTC in milk and honey, realizing multi-residues detection of TCs in actual samples by using the same ceria-based fluorescence nanomaterial.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Chopra I (2002) New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors. Drug Resist Updat 5:119–125. https://doi.org/10.1016/s1368-7646(02)00051-1

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez Beltrán J, Rodríguez Rojas A, Yubero E, Blázquez J (2013) The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species. Antimicrob Agents Ch 57:2651–2653. https://doi.org/10.1128/AAC.02363-12

    Article  CAS  Google Scholar 

  3. Leverstein-van HM, Box AT, Blok HE, Paauw A, Fluit AC, Verhoef J (2002) Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. J Infect Dis 186:49–56. https://doi.org/10.1086/341078

    Article  Google Scholar 

  4. Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. https://doi.org/10.1007/s10311-013-0404-8

    Article  CAS  Google Scholar 

  5. Li ZH, Hu XJ, Lu YF, Xie LN, Zhu Y (2023) Determination of sixteen antibiotics and four β-agonists in human urine samples using ultra-performance liquid chromatography-tandem mass spectrometry based on high-throughput automatic solid-phase extraction. Chin J Chromatogr 41:397–408. https://doi.org/10.3724/SP.J.1123.2022.08025

    Article  CAS  Google Scholar 

  6. Baghani A, Mesdaghinia A, Rafieiyan M, Soltan DM, Douraghi M (2019) Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. J Immunoass Immunochem 40:328–342. https://doi.org/10.1080/15321819.2019.1597735

    Article  CAS  Google Scholar 

  7. Wang C, Hu FX, Feng X, Zou XC, Zhao X, Ren YR (2023) A novel micron europium cluster coordination polymer as a strong electrochemiluminescent emitter for accurate and sensitive detection of tetracycline. Food Chem 419:135887. https://doi.org/10.1016/j.foodchem.2023.135887

    Article  CAS  PubMed  Google Scholar 

  8. Liu BX, Zhu HJ, Liu JJ, Wang MZ, Pan JM, Feng RL, Hu PW, Niu XH (2023) Alkali-etched imprinted Mn-Based prussian Blue analogues with superior oxidase-mimetic activity and precise recognition for tetracycline colorimetric sensing. Acs Appl Mater Inter 15:24736–24746. https://doi.org/10.1021/acsami.3c02207

    Article  CAS  Google Scholar 

  9. Tang JM, Zheng XL, Jiang S, Cao MD, Wang SX, Zhou ZY, Nie XQ, Fang Y, Le T (2022) Dual fluorescent aptasensor for simultanous and quantitative detection of sulfadimethoxine and oxytetracycin residues in animal-derived foods tissues based on mesoporous silica. Front Nutr 9:1077893. https://doi.org/10.3389/fnut.2022.1077893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang WK, Zheng XY, Gao F, Li HH, Fu B, Guo DY, Wang FX, Pan QH (2022) CdTe QDs@ZIF-8 composite-based recyclable ratiometric fluorescent sensor for rapid and sensitive detection of chlortetracycline. Spectrochim Acta Mol Biomol Spectrosc 270:120785. https://doi.org/10.1016/j.saa.2021.120785

    Article  CAS  Google Scholar 

  11. Wang BY, Gu CX, Jiao Y, Gao YF, Liu XN, Guo JM, Qian TW (2023) Novel preparation of red fluorescent carbon dots for tetracycline sensing and its application in trace determination. Talanta 253:123975. https://doi.org/10.1016/j.talanta.2022.123975

    Article  CAS  PubMed  Google Scholar 

  12. Ma YY, Tian ZM, Zhai WF, Qu Y (2022) Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res 15:10328–10342. https://doi.org/10.1007/s12274-022-4666-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. He C, Ke ZY, Liu K, Peng JS, Yang QH, Wang LX, Feng GF, Fang J (2023) Nanozyme-based dual-signal sensing system for colorimetric and photothermal detection of AChE activity in the blood of liver-injured mice. Anal Bioanal Chem 415:2655–2664. https://doi.org/10.1007/s00216-023-04663-1

    Article  CAS  PubMed  Google Scholar 

  14. Kim S, Han J, Chung H, Choi YK, Hashkavayi AB, Zhou Y, Park KS (2021) Pyrophosphate-enhanced oxidase activity of Cerium Oxide nanoparticles for Colorimetric detection of nucleic acids. Sensors-Basel. https://doi.org/10.3390/s21227567

  15. Shen Y, Wei Y, Gao X, Nie C, Wang J, Wu Y (2023) Engineering an enzymatic cascade catalytic smartphone-based sensor for onsite visual ratiometric fluorescence-colorimetric dual-mode detection of methyl mercaptan. Environ Sci Technol 57:1680–1691. https://doi.org/10.1021/acs.est.2c07899

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Pan L, Li XZ, Zhang QP, Xu SH, Yang L, Yang F, Jiang CL (2022) A boric acid functional multi-emission metal organic frameworks-based fluorescence sensing platform for visualization of gallic acid. Chem Eng J 450:138283. https://doi.org/10.1016/j.cej.2022.138283

    Article  CAS  Google Scholar 

  17. Yang ZY, Luo SL, Zeng YP, Shi CM, Li R (2017) Albumin-mediated biomineralization of shape-controllable and biocompatible Ceria nanomaterials. Acs Appl Mater Inter 9:6839–6848. https://doi.org/10.1021/acsami.6b15442

    Article  CAS  Google Scholar 

  18. Ding L, Zhao Y, Li H, Zhang Q, Yang W, Fu B, Pan Q (2021) A highly selective ratiometric fluorescent probe for doxycycline based on the sensitization effect of bovine serum albumin. J Hazard Mater 416:125759. https://doi.org/10.1016/j.jhazmat.2021.125759

    Article  CAS  PubMed  Google Scholar 

  19. Liang YQ, Wu XY, Zeng JY, Wu YN, Lai JP, Sun H (2022) A novel fluorescence ratio probe based on dual-emission carbon dots for highly selective and sensitive detection of chlortetracycline and cell imaging. Anal Bioanal Chem 414:3043–3055. https://doi.org/10.1007/s00216-022-03908-9

    Article  CAS  PubMed  Google Scholar 

  20. Lin BX, Zhang TY, Xin XL, Wu D, Huang Y, Liu YW, Cao YJ, Guo ML, Yu Y (2019) Europium(III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Microchim Acta 186:442. https://doi.org/10.1007/s00604-019-3557-8

    Article  CAS  Google Scholar 

  21. Ps PJ, Tharayil NJ (2020) Crystal plane effect on antioxidant efficacy of nanoceria synthesized with assistance of DNA. J Phys Chem Solids 141:109421. https://doi.org/10.1016/j.jpcs.2020.109421

    Article  CAS  Google Scholar 

  22. Zhang YL, Mehedi Hassan M, Rong YW, Liu R, Li HH, Ouyang Q, Chen QS (2022) An upconversion nanosensor for rapid and sensitive detection of tetracycline in food based on magnetic-field-assisted separation. Food Chem 373:131497. https://doi.org/10.1016/j.foodchem.2021.131497

    Article  CAS  PubMed  Google Scholar 

  23. Mousavizadegan M, Hosseini M, Sheikholeslami MN, Hamidipanah Y, Reza Ganjali M (2023) Smartphone image analysis-based fluorescence detection of tetracycline using machine learning. Food Chem 403:134364. https://doi.org/10.1016/j.foodchem.2022.134364

    Article  CAS  PubMed  Google Scholar 

  24. Zhang HF, Zhou Q, Han X, Li M, Yuan J, Wei R, Zhang XF, Wu MY, Zhao W (2021) Nitrogen-doped carbon dots derived from hawthorn for the rapid determination of chlortetracycline in pork samples. Spectrochim Acta Mol Biomol Spectrosc 255:119736. https://doi.org/10.1016/j.saa.2021.119736

    Article  CAS  Google Scholar 

  25. Bhattacharjee S, Chakraborty T, Bhaumik A (2022) A Ce-MOF as an alkaline phosphatase mimic: Ce-OH2 sites in catalytic dephosphorylation. Inorg Chem Front 9:5735–5744. https://doi.org/10.1039/D2QI01443B

    Article  CAS  Google Scholar 

  26. Qi HJ, Teng M, Liu M, Liu SX, Li J, Yu HP, Teng CB, Huang ZH, Hu L, Qian S, Ahmad U, Tao D, Qiang G, Hu GZ (2019) Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe (3+) ions and tetracyclines. J Colloid Interf Sci 539:332–341. https://doi.org/10.1016/j.jcis.2018.12.047

    Article  ADS  CAS  Google Scholar 

  27. Zhang M, Yu HM, Tang XD, Zhu XH, Deng SP, Chen W (2022) Multifunctional Carbon dots-based fluorescence detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods. Nanomaterials-Basel 12:4166. https://doi.org/10.3390/nano12234166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan YJ, Wang ZG, Su M, Liu XT, Shen SG, Dong JX (2023) A dual-signal fluorescent colorimetric tetracyclines sensor based on multicolor carbon dots as probes and smartphone-assisted visual assay. Anal Chim Acta 1247:340843. https://doi.org/10.1016/j.aca.2023.340843

    Article  CAS  PubMed  Google Scholar 

  29. Fan Y, Qiao WJ, Long WJ, Chen HY, Fu HY, Zhou CS, She YB (2022) Detection of tetracycline antibiotics using fluorescent turn-off sensor based on S, N-doped carbon quantum dots. Spectrochim Acta Mol Biomol Spectrosc 274:121033. https://doi.org/10.1016/j.saa.2022.121033

    Article  CAS  Google Scholar 

  30. Zhang LX, Zhong H, Zhang H, Ding CF (2021) A multifunctional nano system based on DNA and CeO2 for intracellular imaging of miRNA and enhancing photodynamic therapy. Talanta 221:121554. https://doi.org/10.1016/j.talanta.2020.121554

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Liu BW, Huang PC, Wu FY, Ma LH (2021) Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines. Anal Bioanal Chem 413:2565–2575. https://doi.org/10.1007/s00216-021-03221-x

    Article  CAS  PubMed  Google Scholar 

  32. Che HC, Nie YL, Tian XK, Li Y (2023) New method for morphological identification and simultaneous quantification of multiple tetracyclines by a white fluorescent probe. J Hazard Mater 441:129956. https://doi.org/10.1016/j.jhazmat.2022.129956

    Article  CAS  PubMed  Google Scholar 

  33. Jia YC, Cheng Z, Wang GH, Shuang SM, Zhou YH, Dong C, Du FF (2023) Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples. Food Chem 402:134245. https://doi.org/10.1016/j.foodchem.2022.134245

    Article  CAS  PubMed  Google Scholar 

  34. Wang CY, Huang GL, Luo XL, Tang WZ, Yue TL, Li ZH (2022) Construction of ratiometric fluorescence sensor and test strip with smartphone based on dual-emission carbon dots for the specific detection of chlortetracycline. Anal Bioanal Chem 414:8143–8154. https://doi.org/10.1007/s00216-022-04349-0

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Wang TF, Wang ZL, Zou X, Wang WJ, Zhang SL, Gong ZJ (2021) Ratiometric fluorescent probe for tetracycline detection based on waste printing paper. Luminescence 36:1553–1560. https://doi.org/10.1002/bio.4100

    Article  CAS  PubMed  Google Scholar 

  36. Fu Q, Long CC, Qin LF, Jiang ZX, Qing TP, Zhang P, Feng B (2021) Fluorescent and colorimetric dual-mode detection of tetracycline in wastewater based on heteroatoms-doped reduced state carbon dots. Environ Pollut 283:117109. https://doi.org/10.1016/j.envpol.2021.117109

    Article  CAS  PubMed  Google Scholar 

  37. Liu L, Chen Q, Lv J, Li YP, Wang KC, Li JR (2022) Stable metal–Organic frameworks for fluorescent detection of Tetracycline Antibiotics. Inorg Chem 61:8015–8021. https://doi.org/10.1021/acs.inorgchem.2c00754

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 82173571), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (JX10314198).

Author information

Authors and Affiliations

Authors

Contributions

Qianji Li: Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing-original draft. Pengfei Fan: Data curation, Formal analysis, Methodology, Validation. Zejia Hao: Visualization, Formal analysis. Shanhong Ni: Formal analysis. Qian Wu: Formal analysis. Lei Li: Conceptualization, Funding acquisition, Resources, Supervision, Project administration, Writing-review & editing.

Corresponding author

Correspondence to Lei Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 870 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Fan, P., Hao, Z. et al. Fluorimetric determination of tetracycline antibiotics in animal derived foods using boron and nitrogen co-doped ceria-based nanoparticles. Microchim Acta 191, 147 (2024). https://doi.org/10.1007/s00604-024-06214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06214-6

Keywords

Navigation