Skip to main content
Log in

An impedance labeling free electrochemical aptamer sensor based on tetrahedral DNA nanostructures for doxorubicin determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Based on the electrochemical impedance method, a marker-free biosensor with aptamer as a biometric element was developed for the determination of doxorubicin (DOX). By combining aptamer with rigid tetrahedral DNA nanostructures (TDNs) and fixing them on the surface of gold electrode (GE) as biometric elements, the density and directivity of surface nanoprobes improved, and DOX was captured with high sensitivity and specificity. DOX was captured by immobilized aptamers on the GE, which inhibited electron transfer between the GE and [Fe(CN)6]3−/4− in solution, resulting in a change in electrochemical impedance. When the DOX concentration was between 10.0 and 100.0 nM, the aptasensor showed a linear relationship with charge transfer resistance, the relative standard deviation (RSD) ranged from 3.6 to 5.9%, and the detection limit (LOD) was 3.0 nM. This technique offered a successful performance for the determination of the target analyte in serum samples with recovery in the range 97.0 to 99.6% and RSD ranged from 4.8 to 6.5%. This method displayed the advantages of fast response speed, good selectivity, and simple sensor structure and showed potential application in therapeutic drug monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang ZG, Yu XY, Wang Z, Wu P, Huang J (2015) Anthracyclines potentiate anti-tumor immunity: a new opportunity for chemoimmunotherapy. Cancer Lett 369(2):331–335. https://doi.org/10.1016/j.canlet.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  2. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U (2021) Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 139:111708. https://doi.org/10.1016/j.biopha.2021.111708

    Article  CAS  PubMed  Google Scholar 

  3. Rivankar S (2014) An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 10(4):853–858. https://doi.org/10.4103/0973-1482.139267

    Article  PubMed  Google Scholar 

  4. Sheibani M, Azizi Y, Shayan M, Nezamoleslami S, Eslami F, Farjoo MH, Dehpour AR (2022) Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol 22(4):292–310. https://doi.org/10.1007/s12012-022-09721-1

    Article  CAS  PubMed  Google Scholar 

  5. Wu BB, Leung KT, Poon ENY (2022) Mitochondrial-targeted therapy for doxorubicin-induced cardiotoxicity. Int J Mol Sci 23(3):1912. https://doi.org/10.3390/ijms23031912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Int Med 91(5):710–717. https://doi.org/10.7326/0003-4819-91-5-710

    Article  Google Scholar 

  7. Waterhouse DN, Tardi PG, Mayer LD, Bally MB (2001) A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf 24(12):903–920. https://doi.org/10.2165/00002018-200124120-00004

    Article  CAS  PubMed  Google Scholar 

  8. Chisvert A, Sisternes J, Balaguer A, Salvador A (2010) A gas chromatography-mass spectrometric method to determine skin-whitening agents in cosmetic products. Talanta 81(1–2):530–536. https://doi.org/10.1016/j.talanta.2009.12.037

    Article  CAS  PubMed  Google Scholar 

  9. Fogli S, Danesi R, Innocenti F, Di Paolo A, Bocci G, Barbara C, Del Tacca M (1999) An improved HPLC method for therapeutic drug monitoring of daunorubicin, idarubicin, doxorubicin, epirubicin, and their 13-dihydro metabolites in human plasma. Ther Drug Monit 21(3):367–375. https://doi.org/10.1097/00007691-199906000-00022

    Article  CAS  PubMed  Google Scholar 

  10. Chin DL, Lum BL, Sikic BI (2002) Rapid determination of PEGylated liposomal doxorubicin and its major metabolite in human plasma by ultraviolet-visible high-performance liquid chromatography. J Chromatogr B 779(2):259–269. https://doi.org/10.1016/s1570-0232(02)00395-1

    Article  CAS  Google Scholar 

  11. Hassan HNA, Barsoum BN, Habib IHI (1999) Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman Filter approach. J Pharmaceut Biomed 20(1–2):315–320. https://doi.org/10.1016/s0731-7085(99)00048-5

    Article  CAS  Google Scholar 

  12. Sun SG, Huang X, Ma MH, Qiu N, Cai ZX, Luo Z, Alies NP (2012) Systematic evaluation of avidin-biotin interaction by fluorescence spectrophotometry. Spectrochim Acta A 89:99–104. https://doi.org/10.1016/j.saa.2011.12.003

    Article  ADS  CAS  Google Scholar 

  13. Mohammadinejad A, Abnous K, Nameghi MA, Yahyazadeh R, Hamrah S, Senobari F, Mohajeri SA (2023) Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. Spectrochim Acta A 288:122200. https://doi.org/10.1016/j.saa.2022.122200

    Article  CAS  Google Scholar 

  14. Yang XP, Gao HH, Qian F, Zhao C, Liao XJ (2016) Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J Pharmaceut Biomed 117:118–124. https://doi.org/10.1016/j.jpba.2015.08.037

    Article  CAS  Google Scholar 

  15. Simeon N, Chatelut E, Canal P, Nertz M, Couderc F (1999) Anthracycline analysis by capillary electrophoresis - application to the analysis of daunorubicine in Kaposi sarcoma tumor. J Chromatogr A 853(1–2):449–454. https://doi.org/10.1016/s0021-9673(99)00383-0

    Article  CAS  PubMed  Google Scholar 

  16. Wang SD, Liu YD, Zhu AW, Tian Y (2023) In vivo electrochemical biosensors: recent advances in molecular design, electrode materials, and electrochemical devices. Anal Chem 95(1):388–406. https://doi.org/10.1021/acs.analchem.2c04541

    Article  CAS  PubMed  Google Scholar 

  17. Parrilla M, Vanhooydonck A, Johns M, Watts R, De Wael K (2023) 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid. Sensor Actuat B-Chem 378:133159. https://doi.org/10.1016/j.snb.2022.133159

    Article  CAS  Google Scholar 

  18. Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8(3):1400–1458. https://doi.org/10.3390/s8031400

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM (2023) Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: a comprehensive overview of recent trends. Biotechnol Progr 24:e3366. https://doi.org/10.1002/btpr.3366

    Article  CAS  Google Scholar 

  21. Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens Bioelectron 39(1):70–75. https://doi.org/10.1016/j.bios.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  22. Zhu CZ, Yang GH, Li H, Du D, Lin YH (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  Google Scholar 

  23. Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5(12):2957–2962. https://doi.org/10.1158/1535-7163.mct-06-0172

    Article  CAS  PubMed  Google Scholar 

  24. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452. https://doi.org/10.1021/ac201057w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hasanzadeh M, Shadjou N, de la Guardia M (2015) Recent advances in nanostructures and nanocrystals as signal-amplification elements in electrochemical cytosensing. Trac-Trend in Anal Chem 72:123–140. https://doi.org/10.1016/j.trac.2015.04.020

    Article  CAS  Google Scholar 

  26. Ruscito A, DeRosa MC (2016) Small-molecule binding aptamers: selection strategies, characterization, and applications. Front Chem 4:14. https://doi.org/10.3389/fchem.2016.00014

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu HX, Alkhamis O, Canoura J, Liu YZ, Xiao Y (2021) Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development. Angew Chem Int Ed 60(31):16800–16823. https://doi.org/10.1002/anie.202008663

    Article  CAS  Google Scholar 

  28. White RJ, Rowe AA, Plaxco KW (2010) Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors. Analyst 135(3):589–594. https://doi.org/10.1039/b921253a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D (2018) An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 410(5):1453–1462. https://doi.org/10.1007/s00216-017-0786-8

    Article  CAS  PubMed  Google Scholar 

  30. Yousef H, Liu Y, Zheng LX (2022) Nanomaterial-based label-free electrochemical aptasensors for the detection of thrombin. Biosensors-Basel 12(4):253. https://doi.org/10.3390/bios12040253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robati RY, Arab A, Ramezani M, Langroodi FA, Abnous K, Taghdisi SM (2016) Aptasensors for quantitative detection of kanamycin. Biosens Bioelectron 82:162–172. https://doi.org/10.1016/j.bios.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  32. Brett CMA (2022) Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules 27(5):1497. https://doi.org/10.3390/molecules27051497

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding CF, Wang XY, Luo XL (2019) Dual-mode electrochemical assay of prostate-specific antigen based on antifouling peptides functionalized with electrochemical probes and internal references. Anal Chem 91(24):15846–15852. https://doi.org/10.1021/acs.analchem.9b04206

    Article  CAS  PubMed  Google Scholar 

  34. Magar HS, Hassan RYA, Mulchandani A (2021) Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21(19):6578. https://doi.org/10.3390/s21196578

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Radi AE, Sanchez JLA, Baldrich E, O’Sullivan CK (2005) Reusable impedimetric aptasensor. Anal Chem 77(19):6320–6323. https://doi.org/10.1021/ac0505775

    Article  CAS  PubMed  Google Scholar 

  36. Pei H, Liang L, Yao GB, Li J, Huang Q, Fan CH (2012) Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew Chem Int Edit 51(36):9020–9024. https://doi.org/10.1002/anie.201202356

    Article  CAS  Google Scholar 

  37. Peng Q, Shao XR, Xie J, Shi SR, Wei XQ, Zhang T, Cai XX, Lin YF (2016) Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells. Acs Appl Mater Interfaces 8(20):12733–12739. https://doi.org/10.1021/acsami.6b03786

    Article  CAS  PubMed  Google Scholar 

  38. Lin MH, Song P, Zhou GB, Zuo XL, Aldalbahi A, Lou XD, Shi JY, Fan CH (2016) Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc 11(7):1244–1263. https://doi.org/10.1038/nprot.2016.071

    Article  CAS  PubMed  Google Scholar 

  39. Mo JW, Wang SC, Zeng JY, Ding X (2023) Aptamer-based upconversion fluorescence sensor for doxorubicin detection. J Fluoresc 33(5):1897–1905. https://doi.org/10.1007/s10895-023-03184-5

    Article  CAS  PubMed  Google Scholar 

  40. Mescheryakova SA, Matlakhov IS, Strokin PD, Drozd DD, Goryacheva IY, Goryacheva OA (2023) Fluorescent alloyed CdZnSeS/ZnS nanosensor for doxorubicin detection. Biosensors-Basel 13(6):596. https://doi.org/10.3390/bios13060596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kong FL, Luo J, Jing LP, Wang YD, Shen HY et al (2023) Reduced graphene oxide and gold nanoparticles-modified electrochemical aptasensor for highly sensitive detection of doxorubicin. Nanomaterials 13(7):1223. https://doi.org/10.3390/nano13071223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hasanzadeh M, Hashemzadeh N, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A (2016) Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J Molecul Liq 221:354–357. https://doi.org/10.1016/j.molliq.2016.05.082

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 21675177) and the Youth Science Foundation of Guangxi Medical University (No. GXMUYSF202338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuanguang Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 321 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, D., Yan, H. & Chen, Z. An impedance labeling free electrochemical aptamer sensor based on tetrahedral DNA nanostructures for doxorubicin determination. Microchim Acta 191, 94 (2024). https://doi.org/10.1007/s00604-024-06176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06176-9

Keywords

Navigation