Skip to main content

Advertisement

Log in

Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Doxorubicin is an effective chemotherapeutic agent prescribed to treat solid tumors (e.g., ovary, breast, and gastrointestinal cancers). This anti-cancer drug has various side effects, such as allergic reactions, cardiac damage, hair loss, bone marrow suppression, vomiting, and bladder irritation. The most dangerous side effect of doxorubicin is cardiomyopathy, leading to congestive heart failure. The exact mechanisms of doxorubicin-induced cardiotoxicity remain incompletely understood. Alteration in myocardial structure and functional cardiac disorders is provoked by doxorubicin administration; subsequently, cardiomyopathy and congestive heart failure can occur. Congestive heart failure due to doxorubicin is associated with mortality and morbidity. Probably, doxorubicin-induced cardiotoxicity starts from myocardial cell injury and is followed by left ventricular dysfunction. Many factors and multiple pathways are responsible for the creation of doxorubicin-induced cardiotoxicity. Inflammatory cytokines, oxidative stress pathways, mitochondrial damage, intracellular Ca2+ overload, iron-free radical production, DNA, and myocyte membrane injuries have critical roles in the pathophysiology of doxorubicin-induced cardiotoxicity. Unfortunately, there are currently a few medications for the treatment of doxorubicin-induced cardiotoxicity in clinical settings. Extensive basic and clinical researches have been carried out to discover preventive treatments. This review briefly discusses the basic and experimental approaches for treating or preventing doxorubicin-mediated cardiotoxicity based on its pathophysiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Available upon request.

Code Availability

Not applicable.

References

  1. Najafi, M., Shayesteh, M. R. H., Mortezaee, K., Farhood, B., & Haghi-Aminjan, H. (2020). The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sciences, 241, 117173.

    CAS  PubMed  Google Scholar 

  2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249.

    Google Scholar 

  3. Young, R. C., Ozols, R. F., & Myers, C. E. (1981). The anthracycline antineoplastic drugs. New England Journal of Medicine, 305, 139–153.

    CAS  Google Scholar 

  4. Narkiewicz, K., Ratcliffe, L. E., Hart, E. C., Briant, L. J., Chrostowska, M., Wolf, J., Szyndler, A., Hering, D., Abdala, A. P., & Manghat, N. (2016). Unilateral carotid body resection in resistant hypertension: A safety and feasibility trial. JACC: Basic to Translational Science, 1, 313–324.

    PubMed  PubMed Central  Google Scholar 

  5. Hardaway, B. W. (2019). Adriamycin-associated cardiomyopathy: Where are we now? Updates in pathophysiology, dose recommendations, prognosis, and outcomes. Current Opinion in Cardiology, 34, 289–295.

    PubMed  Google Scholar 

  6. Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C., & Spalla, C. (1969). Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnology and Bioengineering, 11, 1101–1110.

    CAS  PubMed  Google Scholar 

  7. Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.

    CAS  PubMed  Google Scholar 

  8. Yu, J., Wang, C., Kong, Q., Wu, X., Lu, J.-J., & Chen, X. (2018). Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine, 40, 125–139.

    CAS  PubMed  Google Scholar 

  9. Wenningmann, N., Knapp, M., Ande, A., Vaidya, T. R., & Ait-Oudhia, S. (2019). Insights into doxorubicin-induced cardiotoxicity: Molecular mechanisms, preventive strategies, and early monitoring. Molecular Pharmacology, 96, 219–232.

    CAS  PubMed  Google Scholar 

  10. Speth, P. A., van Hoesel, Q. G., & Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics, 15, 15–31. https://doi.org/10.2165/00003088-198815010-00002

    Article  CAS  PubMed  Google Scholar 

  11. Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L., Jr., Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717. https://doi.org/10.7326/0003-4819-91-5-710

    Article  Google Scholar 

  12. Steinherz, L. J., Steinherz, P. G., Tan, C. T. C., Heller, G., & Murphy, M. L. (1991). Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA, 266, 1672–1677. https://doi.org/10.1001/jama.1991.03470120074036

    Article  CAS  PubMed  Google Scholar 

  13. Ganz, P. A., Hussey, M. A., Moinpour, C. M., Unger, J. M., Hutchins, L. F., Dakhil, S. R., Giguere, J. K., Goodwin, J. W., Martino, S., & Albain, K. S. (2008). Late cardiac effects of adjuvant chemotherapy in breast cancer survivors treated on Southwest Oncology Group protocol s8897. Journal of Clinical Oncology, 26, 1223–1230. https://doi.org/10.1200/jco.2007.11.8877

    Article  CAS  PubMed  Google Scholar 

  14. Avagimyan, A., Mkrtchyan, L., Abrahomovich, O., Sheibani, M., Guevorkyan, A., Sarrafzadegan, N., Kozhukhov, S., Agati, L., Astengiano, R., Zaritska, V., & Jndoyan, Z. (2021). AC-mode of chemotherapy as a trigger of cardiac syndrome X: A case study. Current Problems in Cardiology. https://doi.org/10.1016/j.cpcardiol.2021.100994

    Article  PubMed  Google Scholar 

  15. Stark, C., Taimen, P., Savunen, T., & Koskenvuo, J. (2018). Pegylated and liposomal doxorubicin is associated with high mortality and causes limited cardiotoxicity in mice. BMC Research Notes, 11, 148. https://doi.org/10.1186/s13104-018-3260-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boucek, R. J., Kunkel, E. M., Graham, T. P., Brenner, D., & Olson, R. D. (1987). Doxorubicinol, the metabolite of doxorubucin, is more cardiotoxic than doxorubicin. Pediatric Research, 21, 187–187. https://doi.org/10.1203/00006450-198704010-00127

    Article  Google Scholar 

  17. Olson, R. D., Mushlin, P. S., Brenner, D. E., Fleischer, S., Cusack, B. J., Chang, B. K., & Boucek, R. J., Jr. (1988). Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proceedings of the National Academy of Sciences of the United States of America, 85, 3585–3589. https://doi.org/10.1073/pnas.85.10.3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lehenbauer Ludke, A. R., Al-Shudiefat, A.A.-R.S., Dhingra, S., Jassal, D. S., & Singal, P. K. (2009). A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Canadian Journal of Physiology and Pharmacology, 87, 756–763.

    CAS  Google Scholar 

  19. Pecoraro, M., Del Pizzo, M., Marzocco, S., Sorrentino, R., Ciccarelli, M., Iaccarino, G., Pinto, A., & Popolo, A. (2016). Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and applied pharmacology, 293, 44–52.

    CAS  PubMed  Google Scholar 

  20. Osataphan, N., Phrommintikul, A., Chattipakorn, S. C., & Chattipakorn, N. (2020). Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. Journal of Cellular and Molecular Medicine, 24, 6534–6557.

    PubMed  PubMed Central  Google Scholar 

  21. Singal, P., Li, T., Kumar, D., Danelisen, I., & Iliskovic, N. (2000). Adriamycin-induced heart failure: Mechanisms and modulation. Molecular and Cellular Biochemistry, 207, 77–86.

    CAS  PubMed  Google Scholar 

  22. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.

    CAS  PubMed  Google Scholar 

  23. Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41, 389–405.

    CAS  PubMed  Google Scholar 

  24. Aldieri, E., Bergandi, L., Riganti, C., Costamagna, C., Bosia, A., & Ghigo, D. (2002). Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation. Toxicology and Applied Pharmacology, 185, 85–90.

    CAS  PubMed  Google Scholar 

  25. Bahadır, A., Kurucu, N., Kadıoğlu, M., & Yenilme, E. (2014). The role of nitric oxide in Doxorubicin-induced cardiotoxicity: Experimental study. Turkish Journal of Hematology, 31, 68.

    PubMed  PubMed Central  Google Scholar 

  26. Nozaki, N., Shishido, T., Takeishi, Y., & Kubota, I. (2004). Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation, 110, 2869–2874.

    CAS  PubMed  Google Scholar 

  27. Riad, A., Bien, S., Gratz, M., Escher, F., Heimesaat, M. M., Bereswill, S., Krieg, T., Felix, S. B., Schultheiss, H. P., & Kroemer, H. K. (2008). Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. European Journal of Heart Failure, 10, 233–243.

    CAS  PubMed  Google Scholar 

  28. Hu, C., Zhang, X., Zhang, N., Wei, W. Y., Li, L. L., Ma, Z. G., & Tang, Q. Z. (2020). Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clinical and Translational Medicine, 10, e124.

    PubMed  PubMed Central  Google Scholar 

  29. Pecoraro, M., Sorrentino, R., Franceschelli, S., Del Pizzo, M., Pinto, A., & Popolo, A. (2015). Doxorubicin-mediated cardiotoxicity: Role of mitochondrial connexin 43. Cardiovascular Toxicology, 15, 366–376.

    CAS  PubMed  Google Scholar 

  30. Lyu, Y. L., Kerrigan, J. E., Lin, C.-P., Azarova, A. M., Tsai, Y.-C., Ban, Y., & Liu, L. F. (2007). Topoisomerase IIβ–mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research, 67, 8839–8846.

    CAS  PubMed  Google Scholar 

  31. Horie, T., Ono, K., Nishi, H., Nagao, K., Kinoshita, M., Watanabe, S., Kuwabara, Y., Nakashima, Y., Takanabe-Mori, R., & Nishi, E. (2010). Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovascular Research, 87, 656–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rohrbach, S., Muller-Werdan, U., Werdan, K., Koch, S., Gellerich, N. F., & Holtz, J. (2005). Apoptosis-modulating interaction of the neuregulin/erbB pathway with antracyclines in regulating Bcl-xS and Bcl-xL in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 38, 485–493.

    CAS  PubMed  Google Scholar 

  33. Renu, K., Abilash, V., & Arunachalam, S. (2018). Molecular mechanism of doxorubicin-induced cardiomyopathy–An update. European Journal of Pharmacology, 818, 241–253.

    CAS  PubMed  Google Scholar 

  34. Lebrecht, D., Setzer, B., Ketelsen, U.-P., Haberstroh, J. R., & Walker, U. A. (2003). Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation, 108, 2423–2429.

    CAS  PubMed  Google Scholar 

  35. Lebrecht, D., Geist, A., Ketelsen, U. P., Haberstroh, J., Setzer, B., & Walker, U. (2007). Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. British Journal of Pharmacology, 151, 771–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Montaigne, D., Marechal, X., Baccouch, R., Modine, T., Preau, S., Zannis, K., Marchetti, P., Lancel, S., & Neviere, R. (2010). Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart. Toxicology and Applied Pharmacology, 244, 300–307.

    CAS  PubMed  Google Scholar 

  37. Danz, E. D. B., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine, 46, 1589–1597.

    PubMed  Google Scholar 

  38. Liu, Y., Asnani, A., Zou, L., Bentley, V. L., Yu, M., Wang, Y., Dellaire, G., Sarkar, K. S., Dai, M., Chen, H. H., Sosnovik, D. E., Shin, J. T., Haber, D. A., Berman, J. N., Chao, W., & Peterson, R. T. (2014). Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Science Translational Medicine, 6, 266ra170. https://doi.org/10.1126/scitranslmed.3010189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fisher, P. W., Salloum, F., Das, A., Hyder, H., & Kukreja, R. C. (2005). Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation, 111, 1601–1610. https://doi.org/10.1161/01.cir.0000160359.49478.c2

    Article  CAS  PubMed  Google Scholar 

  40. Beak, J., Huang, W., Parker, J. S., Hicks, S. T., Patterson, C., Simpson, P. C., Ma, A., Jin, J., & Jensen, B. C. (2017). An oral selective alpha-1A adrenergic receptor agonist prevents doxorubicin cardiotoxicity. JACC. Basic to translational science, 2, 39–53. https://doi.org/10.1016/j.jacbts.2016.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yourtee, D. M., Elkins, L. L., Nalvarte, E. L., & Smith, R. E. (1992). Amplification of doxorubicin mutagenicity by cupric ion. Toxicology and Applied Pharmacology, 116, 57–65.

    CAS  PubMed  Google Scholar 

  42. Colombo, R., Dalle Donne, I., & Milzani, A. (1990). Metal ions modulate the effect of doxorubicin on actin assembly. Cancer Biochemistry Biophysics, 11, 217–226.

    CAS  PubMed  Google Scholar 

  43. Shi, Y., Moon, M., Dawood, S., McManus, B., & Liu, P. (2011). Mechanisms and management of doxorubicin cardiotoxicity. Herz, 36, 296–305.

    CAS  PubMed  Google Scholar 

  44. Panjrath, G. S., Patel, V., Valdiviezo, C. I., Narula, N., Narula, J., & Jain, D. (2007). Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model. Journal of the American College of Cardiology, 49, 2457–2464.

    CAS  PubMed  Google Scholar 

  45. Al-Shabanah, O. A., Aleisa, A. M., Hafez, M. M., Al-Rejaie, S. S., Al-Yahya, A. A., Bakheet, S. A., Al-Harbi, M. M., & Sayed-Ahmed, M. M. (2012). Desferrioxamine attenuates doxorubicin-induced acute cardiotoxicity through TFG-/Smad p53 pathway in rat model. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2012/619185

    Article  PubMed  PubMed Central  Google Scholar 

  46. Al-Harbi, M., Al-Gharably, N. M., Al-Shabanah, O. A., Al-Bekairi, A. M., Osman, A. M. M., & Tawfik, H. N. (1992). Prevention of doxorubicin-induced myocardial and haematological toxicities in rats by the iron chelator desferrioxamine. Cancer Chemotherapy and Pharmacology, 31, 200–204.

    CAS  PubMed  Google Scholar 

  47. Ammar, E.-S.M., Said, S. A., Suddek, G. M., & El-Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Canadian Journal of Physiology and Pharmacology, 89, 269–276.

    CAS  Google Scholar 

  48. van Acker, S. A., van Balen, G. P., van den Berg, D. J., Bast, A., & van der Vijgh, W. J. (1998). Influence of iron chelation on the antioxidant activity of flavonoids. Biochemical Pharmacology, 56, 935–943.

    PubMed  Google Scholar 

  49. Van Acker, S. A., Tromp, M. N., Griffioen, D. H., Van Bennekom, W. P., Van Der Vijgh, W. J., & Bast, A. (1996). Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine, 20, 331–342.

    PubMed  Google Scholar 

  50. Bast, A., Haenen, G. R., Bruynzeel, A. M., & Van der Vijgh, W. J. (2007). Protection by flavonoids against anthracycline cardiotoxicity: From chemistry to clinical trials. Cardiovascular Toxicology, 7, 154–159.

    CAS  PubMed  Google Scholar 

  51. Willems, A. M., Bruynzeel, A. M., Kedde, M. A., Van Groeningen, C. J., Bast, A., & Van Der Vijgh, W. J. (2006). A phase I study of monohydroxyethylrutoside in healthy volunteers. Cancer Chemotherapy and Pharmacology, 57, 678–684.

    CAS  PubMed  Google Scholar 

  52. Bast, A., Kaiserová, H., Den Hartog, G., Haenen, G., & Van Der Vijgh, W. (2007). Protectors against doxorubicin-induced cardiotoxicity: Flavonoids. Cell Biology and Toxicology, 23, 39–47.

    CAS  PubMed  Google Scholar 

  53. Ehrke, M. J., Ryoyama, K., & Cohen, S. A. (1984). Cellular basis for adriamycin-induced augmentation of cell-mediated cytotoxicity in culture. Cancer Research, 44, 2497–2504.

    CAS  PubMed  Google Scholar 

  54. Maccubbin, D. L., Wing, K. R., Mace, K. F., Ho, R. L., Ehrke, M. J., & Mihich, E. (1992). Adriamycin-induced modulation of host defenses in tumor-bearing mice. Cancer Research, 52, 3572–3576.

    CAS  PubMed  Google Scholar 

  55. Nagai, K., Fukuno, S., Oda, A., & Konishi, H. (2016). Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti-cancer Drugs, 27, 17–23.

    CAS  PubMed  Google Scholar 

  56. Wang, S., Kotamraju, S., Konorev, E., Kalivendi, S., Joseph, J., & Kalyanaraman, B. (2002). Activation of nuclear factor-κB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: The role of hydrogen peroxide. Biochemical Journal, 367, 729–740.

    CAS  PubMed Central  Google Scholar 

  57. Sheibani, M., Nezamoleslami, S., Faghir-Ghanesefat, H., Hossein Emami, A., & Dehpour, A. R. (2020). Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemotherapy and Pharmacology, 85, 563–571.

    CAS  PubMed  Google Scholar 

  58. Sun, Z., Yan, B., Yu, W. Y., Yao, X., Ma, X., Sheng, G., & Ma, Q. (2016). Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and Therapeutic Medicine, 12, 1879–1884.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology, 19, 1–10.

    Google Scholar 

  60. Inchiosa, M. A., Jr., & Smith, C. M. (1990). Effects of ibuprofen on doxorubicin toxicity. Research Communications in Chemical Pathology and Pharmacology, 67, 63–78.

    CAS  PubMed  Google Scholar 

  61. Guo, R., Wu, K., Chen, J., Mo, L., Hua, X., Zheng, D., Chen, P., Chen, G., Xu, W., & Feng, J. (2013). Exogenous hydrogen sulfide protects against doxorubicin-induced inflammation and cytotoxicity by inhibiting p38MAPK/NFκB pathway in H9c2 cardiac cells. Cellular Physiology and Biochemistry, 32, 1668–1680.

    CAS  PubMed  Google Scholar 

  62. Yarmohammadi, F., Rezaee, R., & Karimi, G. (2021). Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytotherapy Research, 35, 1163–1175.

    CAS  PubMed  Google Scholar 

  63. Xiong, C., Wu, Y. Z., Zhang, Y., Wu, Z. X., Chen, X. Y., Jiang, P., Guo, H. C., Xie, K. R., Wang, K. X., & Su, S. W. (2018). Protective effect of berberine on acute cardiomyopathy associated with doxorubicin treatment. Oncology Letters, 15, 5721–5729.

    PubMed  PubMed Central  Google Scholar 

  64. Asensio-López, M. C., Soler, F., Pascual-Figal, D., Fernández-Belda, F., & Lax, A. (2017). Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS ONE, 12, e0172803.

    PubMed  PubMed Central  Google Scholar 

  65. Morgan, M. J., & Liu, Z. G. (2011). Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 21, 103–115. https://doi.org/10.1038/cr.2010.178

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, Y., Miriyala, S., Miao, L., Mitov, M., Schnell, D., Dhar, S. K., Cai, J., Klein, J. B., Sultana, R., Butterfield, D. A., Vore, M., Batinic-Haberle, I., Bondada, S., & St Clair, D. K. (2014). Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radical Biology & Medicine, 72, 55–65. https://doi.org/10.1016/j.freeradbiomed.2014.03.001

    Article  CAS  Google Scholar 

  67. Guo, C., Sun, L., Chen, X., & Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8, 2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemotherapy and Pharmacology, 64, 811–827. https://doi.org/10.1007/s00280-009-0932-x

    Article  CAS  PubMed  Google Scholar 

  69. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cellular and Molecular Life Sciences: CMLS, 73, 3221–3247. https://doi.org/10.1007/s00018-016-2223-0

    Article  CAS  PubMed  Google Scholar 

  71. Singh, P., Sharma, R., McElhanon, K., Allen, C. D., Megyesi, J. K., Beneš, H., & Singh, S. P. (2015). Sulforaphane protects the heart from doxorubicin-induced toxicity. Free Radical Biology & Medicine, 86, 90–101. https://doi.org/10.1016/j.freeradbiomed.2015.05.028

    Article  CAS  Google Scholar 

  72. Chen, M., Samuel, V. P., Wu, Y., Dang, M., Lin, Y., Sriramaneni, R., Sah, S. K., Chinnaboina, G. K., & Zhang, G. (2019). Nrf2/HO-1 mediated protective activity of genistein against doxorubicin-induced cardiac toxicity. Journal of Environmental Pathology, Toxicology and Oncology, 38, 143–152. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2019029341

    Article  PubMed  Google Scholar 

  73. Cheng, X., Liu, D., Xing, R., Song, H., Tian, X., Yan, C., & Han, Y. (2020). Orosomucoid 1 attenuates doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes via Nrf2 signaling. BioMed Research International, 2020, 5923572. https://doi.org/10.1155/2020/5923572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. El-Agamy, D. S., El-Harbi, K. M., Khoshhal, S., Ahmed, N., Elkablawy, M. A., Shaaban, A. A., & Abo-Haded, H. M. (2019). Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Management and Research, 11, 47–61. https://doi.org/10.2147/cmar.s186696

    Article  CAS  PubMed  Google Scholar 

  75. Fadillioglu, E., Oztas, E., Erdogan, H., Yagmurca, M., Sogut, S., Ucar, M., & Irmak, M. K. (2004). Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. Journal of Applied Toxicology: An International Journal, 24, 47–52.

    CAS  Google Scholar 

  76. Alkreathy, H., Damanhouri, Z. A., Ahmed, N., Slevin, M., Ali, S. S., & Osman, A.-M.M. (2010). Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats. Food and Chemical Toxicology, 48, 951–956.

    CAS  PubMed  Google Scholar 

  77. Sheibani, M., Faghir-Ghanesefat, H., Dehpour, S., Keshavarz-Bahaghighat, H., Sepand, M. R., Ghahremani, M. H., Azizi, Y., Rahimi, N., & Dehpour, A. R. (2019). Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model. Inflammopharmacology, 27, 1071–1080. https://doi.org/10.1007/s10787-019-00586-5

    Article  CAS  PubMed  Google Scholar 

  78. Bazmandegan, G., Amirteimoury, M., Kaeidi, A., Shamsizadeh, A., Khademalhosseini, M., Nematollahi, M. H., Hassanipour, M., & Fatemi, I. (2019). Sumatriptan ameliorates renal injury induced by cisplatin in mice. Iranian Journal of Basic Medical Sciences, 22, 563–567. https://doi.org/10.22038/ijbms.2019.33620.8020

    Article  PubMed  PubMed Central  Google Scholar 

  79. Eslami, F., Rahimi, N., Ostovaneh, A., Ghasemi, M., Dejban, P., Abbasi, A., & Dehpour, A. R. (2021). Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT(1B/D) receptors in rats: A pharmacological-based evidence. Fundamental & Clinical Pharmacology, 35, 131–140. https://doi.org/10.1111/fcp.12590

    Article  CAS  Google Scholar 

  80. Mohammad, S., Hedyeh, F.-G., Yaser, A., Tahmineh, M., Hasan, Y. M., Roya Sattarzadeh, B., Amir Hossein, E., & Ahmad Reza, D. (2021). Anti-inflammatory and antioxidative effects of sumatriptan against doxorubicin-induced cardiotoxicity in rat. Acta Medica Iranica. https://doi.org/10.18502/acta.v59i7.7020

    Article  Google Scholar 

  81. Iqbal, M., Dubey, K., Anwer, T., Ashish, A., & Pillai, K. K. (2008). Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacological Reports, 60, 382.

    CAS  PubMed  Google Scholar 

  82. Siveski-Iliskovic, N., Hill, M., Chow, D. A., & Singal, P. K. (1995). Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation, 91, 10–15. https://doi.org/10.1161/01.cir.91.1.10

    Article  CAS  PubMed  Google Scholar 

  83. Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89, 2829–2835. https://doi.org/10.1161/01.cir.89.6.2829

    Article  CAS  PubMed  Google Scholar 

  84. Nagi, M. N., & Mansour, M. A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283–289.

    CAS  PubMed  Google Scholar 

  85. Sadzuka, Y., Sugiyama, T., Shimoi, K., Kinae, N., & Hirota, S. (1997). Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. Toxicology letters, 92, 1–7.

    CAS  PubMed  Google Scholar 

  86. Zhang, Y., Ma, C., Liu, C., & Wei, F. (2020). Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. PeerJ, 8, e8845.

    PubMed  PubMed Central  Google Scholar 

  87. Chen, J.-Y., Hu, R.-Y., & Chou, H.-C. (2013). Quercetin-induced cardioprotection against doxorubicin cytotoxicity. Journal of Biomedical Science, 20, 1–11.

    PubMed  PubMed Central  Google Scholar 

  88. Kaiserová, H., Šimůnek, T., van der Vijgh, W. J., Bast, A., & Kvasničková, E. (2007). Flavonoids as protectors against doxorubicin cardiotoxicity: Role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772, 1065–1074.

    Google Scholar 

  89. Laughton, M. J., Halliwell, B., Evans, P. J., Robin, J., & Hoult, S. (1989). Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865.

    CAS  PubMed  Google Scholar 

  90. Chang, D., Li, H., Qian, C., & Wang, Y. (2019). Diohf protects against doxorubicin-induced cardiotoxicity through ERK1 signaling pathway. Frontiers in Pharmacology, 10, 1081.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, H., Yu, P., Gou, H., Zhang, J., Zhu, M., Wang, Z. H., Tian, J. W., Jiang, Y. T., & Fu, F. H. (2012). Cardioprotective effects of 20(S)-ginsenoside Rh2 against doxorubicin-induced cardiotoxicity in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine, 2012, 506214. https://doi.org/10.1155/2012/506214

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li, L., Pan, Q., Han, W., Liu, Z., Li, L., & Hu, X. (2007). Schisandrin B prevents doxorubicin-induced cardiotoxicity via enhancing glutathione redox cycling. Clinical Cancer Research, 13, 6753–6760. https://doi.org/10.1158/1078-0432.Ccr-07-1579

    Article  CAS  PubMed  Google Scholar 

  93. Zhu, W., Soonpaa, M. H., Chen, H., Shen, W., Payne, R. M., Liechty, E. A., Caldwell, R. L., Shou, W., & Field, L. J. (2009). Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation, 119, 99–106. https://doi.org/10.1161/CIRCULATIONAHA.108.799700

    Article  CAS  PubMed  Google Scholar 

  94. Timm, K. N., & Tyler, D. J. (2020). The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovascular Drugs and Therapy, 34, 255–269. https://doi.org/10.1007/s10557-020-06941-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kobashigawa, L. C., Xu, Y. C., Padbury, J. F., Tseng, Y.-T., & Yano, N. (2014). Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS ONE, 9, e104888.

    PubMed  PubMed Central  Google Scholar 

  96. Zilinyi, R., Czompa, A., Czegledi, A., Gajtko, A., Pituk, D., Lekli, I., & Tosaki, A. (2018). The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: The role of autophagy. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules23051184

    Article  Google Scholar 

  97. Huelsenbeck, J., Henninger, C., Schad, A., Lackner, K. J., Kaina, B., & Fritz, G. (2011). Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death & Disease, 2, e190. https://doi.org/10.1038/cddis.2011.65

    Article  CAS  Google Scholar 

  98. Rawat, P. S., Jaiswal, A., Khurana, A., Bhatti, J. S., & Navik, U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomedicine & Pharmacotherapy, 139, 111708. https://doi.org/10.1016/j.biopha.2021.111708

    Article  CAS  Google Scholar 

  99. Vedam, K., Nishijima, Y., Druhan, L. J., Khan, M., Moldovan, N. I., Zweier, J. L., & Ilangovan, G. (2010). Role of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice. American Journal of Physiology, Heart and Circulatory Physiology, 298, H1832–H1841. https://doi.org/10.1152/ajpheart.01047.2009

    Article  CAS  PubMed  Google Scholar 

  100. Liu, P., Bao, H. Y., Jin, C. C., Zhou, J. C., Hua, F., Li, K., Lv, X. X., Cui, B., Hu, Z. W., & Zhang, X. W. (2019). Targeting extracellular heat shock protein 70 ameliorates doxorubicin-induced heart failure through resolution of toll-like receptor 2-mediated myocardial inflammation. Journal of the American Heart Association, 8, e012338. https://doi.org/10.1161/jaha.119.012338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shan, Y. X., Liu, T. J., Su, H. F., Samsamshariat, A., Mestril, R., & Wang, P. H. (2003). Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. Journal of Molecular and Cellular Cardiology, 35, 1135–1143. https://doi.org/10.1016/s0022-2828(03)00229-3

    Article  CAS  PubMed  Google Scholar 

  102. Zhao, D., Xue, C., Li, J., Feng, K., Zeng, P., Chen, Y., Duan, Y., Zhang, S., Li, X., & Han, J. (2020). Adiponectin agonist ADP355 ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and oxidative stress. Biochemical and Biophysical Research Communications, 533, 304–312.

    CAS  PubMed  Google Scholar 

  103. Ramond, A., Sartorius, E., Mousseau, M., Ribuot, C., & Joyeux-Faure, M. (2008). Erythropoietin pretreatment protects against acute chemotherapy toxicity in isolated rat hearts. Experimental Biology and Medicine, 233, 76–83. https://doi.org/10.3181/0706-RM-152

    Article  CAS  PubMed  Google Scholar 

  104. Man, S. M., Karki, R., Briard, B., Burton, A., Gingras, S., Pelletier, S., & Kanneganti, T.-D. (2017). Differential roles of caspase-1 and caspase-11 in infection and inflammation. Scientific Reports, 7, 45126. https://doi.org/10.1038/srep45126

    Article  CAS  PubMed  Google Scholar 

  105. Yu, W., Qin, X., Zhang, Y., Qiu, P., Wang, L., Zha, W., & Ren, J. (2020). Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner. Cardiovascular Diagnosis and Therapy, 10, 752–769. https://doi.org/10.21037/cdt-19-707

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen, Y. L., Chung, S. Y., Chai, H. T., Chen, C. H., Liu, C. F., Chen, Y. L., Huang, T. H., Zhen, Y. Y., Sung, P. H., Sun, C. K., Chua, S., Lu, H. I., Lee, F. Y., Sheu, J. J., & Yip, H. K. (2015). Early administration of carvedilol protected against doxorubicin-induced cardiomyopathy. The Journal of Pharmacology and Experimental Therapeutics, 355, 516–527. https://doi.org/10.1124/jpet.115.225375

    Article  CAS  PubMed  Google Scholar 

  107. Dulhunty, A., & Casarotto, B. (2011). The ryanodine receptor: A pivotal Ca2+ regulatory protein and potential therapeutic drug target. Current Drug Targets, 12, 709–723.

    CAS  PubMed  Google Scholar 

  108. Dewenter, M., von der Lieth, A., Katus, H. A., & Backs, J. (2017). Calcium signaling and transcriptional regulation in cardiomyocytes. Circulation Research, 121, 1000–1020.

    CAS  PubMed  Google Scholar 

  109. Aziz, A. U. R., Geng, C., Li, W., Yu, X., Qin, K.-R., Wang, H., & Liu, B. (2019). Doxorubicin induces ER calcium release via Src in rat ovarian follicles. Toxicological Sciences, 168, 171–178.

    CAS  PubMed  Google Scholar 

  110. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.

    CAS  PubMed  Google Scholar 

  111. Yarmohmmadi, F., Rahimi, N., Faghir-Ghanesefat, H., Javadian, N., Abdollahi, A., Pasalar, P., Jazayeri, F., Ejtemaeemehr, S., & Dehpour, A. R. (2017). Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. European Journal of Pharmacology, 796, 39–44.

    CAS  PubMed  Google Scholar 

  112. Khalilzadeh, M., Abdollahi, A., Abdolahi, F., Abdolghaffari, A. H., Dehpour, A. R., & Jazaeri, F. (2018). Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sciences, 207, 436–441.

    CAS  PubMed  Google Scholar 

  113. Gross, R. A., Moises, H. C., Uhler, M. D., & Macdonald, R. L. (1990). Dynorphin A and cAMP-dependent protein kinase independently regulate neuronal calcium currents. Proceedings of the National Academy of Sciences, 87, 7025–7029.

    CAS  Google Scholar 

  114. North, R. A., Williams, J. T., Surprenant, A., & Christie, M. J. (1987). Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proceedings of the National Academy of Sciences, 84, 5487–5491.

    CAS  Google Scholar 

  115. Lashgari, N. A., Roudsari, N. M., Zandi, N., Pazoki, B., Rezaei, A., Hashemi, M., Momtaz, S., Rahimi, R., Shayan, M., Dehpour, A. R., & Abdolghaffari, A. H. (2021). Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Molecular Biology Reports, 48, 855–874. https://doi.org/10.1007/s11033-020-06095-x

    Article  CAS  PubMed  Google Scholar 

  116. Zamanian, G., Shayan, M., Rahimi, N., Bahremand, T., Shafaroodi, H., Ejtemaei-Mehr, S., Aghaei, I., & Dehpour, A. R. (2020). Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: The role of NMDA-receptor/NO pathway. Epilepsy & Behavior, 112, 107343. https://doi.org/10.1016/j.yebeh.2020.107343

    Article  Google Scholar 

  117. Kelishomi, R. B., Ejtemaeemehr, S., Tavangar, S. M., Rahimian, R., Mobarakeh, J. I., & Dehpour, A. R. (2008). Morphine is protective against doxorubicin-induced cardiotoxicity in rat. Toxicology, 243, 96–104.

    CAS  PubMed  Google Scholar 

  118. Goodenough, D. A., & Paul, D. L. (2009). Gap junctions. Cold Spring Harbor Perspectives in Biology, 1, a002576.

    PubMed  PubMed Central  Google Scholar 

  119. Severs, N. J. (1994). Pathophysiology of gap junctions in heart disease. Journal of Cardiovascular Electrophysiology, 5, 462–475.

    CAS  PubMed  Google Scholar 

  120. Siti, H. N., Jalil, J., Asmadi, A. Y., & Kamisah, Y. (2020). Effects of quercetin on cardiac function in pressure overload and postischemic cardiac injury in rodents: A systematic review and meta-analysis. Cardiovascular Drugs and Therapy, 16, 1–15.

    Google Scholar 

  121. Srisakuldee, W., Makazan, Z., Nickel, B. E., Zhang, F., Thliveris, J. A., Pasumarthi, K. B., & Kardami, E. (2014). The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovascular Research, 103, 72–80.

    CAS  PubMed  Google Scholar 

  122. Pecoraro, M., Ciccarelli, M., Fiordelisi, A., Iaccarino, G., Pinto, A., & Popolo, A. (2018). Diazoxide improves mitochondrial connexin 43 expression in a mouse model of doxorubicin-induced cardiotoxicity. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19030757

    Article  PubMed  PubMed Central  Google Scholar 

  123. Elhadidy, M. G., Elmasry, A., Rabei, M. R., & Eladel, A. E. (2020). Effect of ghrelin on VEGF-B and connexin-43 in a rat model of doxorubicin-induced cardiomyopathy. Journal of Basic and Clinical Physiology and Pharmacology. https://doi.org/10.1515/jbcpp-2018-0212

    Article  PubMed  Google Scholar 

  124. Zhang, H., Zhang, A., Guo, C., Shi, C., Zhang, Y., Liu, Q., Sparatore, A., & Wang, C. (2011). S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling. PLoS ONE, 6, e26441.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Michan, S., & Sinclair, D. (2007). Sirtuins in mammals: Insights into their biological function. Biochemical Journal, 404, 1–13.

    CAS  Google Scholar 

  126. Tomaselli, D., Steegborn, C., Mai, A., & Rotili, D. (2020). Sirt4: A multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Frontiers in Oncology, 10, 474.

    PubMed  PubMed Central  Google Scholar 

  127. Dolinsky, V. W. (2017). The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction. Biological Chemistry, 398, 955–974.

    CAS  PubMed  Google Scholar 

  128. Cheung, K. G., Cole, L. K., Xiang, B., Chen, K., Ma, X., Myal, Y., Hatch, G. M., Tong, Q., & Dolinsky, V. W. (2015). Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. Journal of Biological Chemistry, 290, 10981–10993.

    CAS  Google Scholar 

  129. Liu, M. H., Shan, J., Li, J., Zhang, Y., & Lin, X. L. (2016). Resveratrol inhibits doxorubicin-induced cardiotoxicity via sirtuin 1 activation in H9c2 cardiomyocytes. Experimental and Therapeutic Medicine, 12, 1113–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ruan, Y., Dong, C., Patel, J., Duan, C., Wang, X., Wu, X., Cao, Y., Pu, L., Lu, D., & Shen, T. (2015). SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cellular Physiology and Biochemistry, 35, 1116–1124.

    CAS  PubMed  Google Scholar 

  131. Pillai, V. B., Kanwal, A., Fang, Y. H., Sharp, W. W., Samant, S., Arbiser, J., & Gupta, M. P. (2017). Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 8, 34082.

    PubMed  PubMed Central  Google Scholar 

  132. Needham, D. M., Shufelt, K. A., Tomlinson, G., Scholey, J. W., & Newton, G. E. (2004). Troponin I and T levels in renal failure patients without acute coronary syndrome: A systematic review of the literature. The Canadian Journal of Cardiology, 20, 1212–1218.

    PubMed  Google Scholar 

  133. Jin, J.-P. (2016). Evolution, regulation, and function of N-terminal variable region of troponin T: Modulation of muscle contractility and beyond. International Review of Cell and Molecular Biology, 321, 1–28.

    CAS  PubMed  Google Scholar 

  134. Bleuel, H., Deschl, U., Bertsch, T., Bölz, G., & Rebel, W. (1995). Diagnostic efficiency of troponin T measurements in rats with experimental myocardial cell damage. Experimental and Toxicologic Pathology, 47, 121–127.

    CAS  PubMed  Google Scholar 

  135. Mair, J., & Apple, F. (1997). Progress in myocardial damage detection: New biochemical markers for clinicians. Critical Reviews in Clinical Laboratory Sciences, 34, 1–66.

    CAS  PubMed  Google Scholar 

  136. Rahimi Balaei, M., Momeny, M., Babaeikelishomi, R., Ejtemaei Mehr, S., Tavangar, S. M., & Dehpour, A. R. (2010). The modulatory effect of lithium on doxorubicin-induced cardiotoxicity in rat. European Journal of Pharmacology, 641, 193–198. https://doi.org/10.1016/j.ejphar.2010.05.046

    Article  CAS  PubMed  Google Scholar 

  137. Chang, E. A., Jin, S. W., Nam, M. H., & Kim, S. D. (2019). Human induced pluripotent stem cells: Clinical significance and applications in neurologic diseases. Journal of Korean Neurosurgical Society, 62, 493–501. https://doi.org/10.3340/jkns.2018.0222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Matsui, T., Miyamoto, N., Saito, F., & Shinozawa, T. (2020). Molecular profiling of human induced pluripotent stem cell-derived cells and their application for drug safety study. Current Pharmaceutical Biotechnology, 21, 807–828. https://doi.org/10.2174/1389201021666200422090952

    Article  CAS  PubMed  Google Scholar 

  139. Devalla, H. D., & Passier, R. (2018). Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aah5457

    Article  PubMed  Google Scholar 

  140. Blinova, K., Dang, Q., Millard, D., Smith, G., Pierson, J., Guo, L., Brock, M., Lu, H. R., Kraushaar, U., Zeng, H., Shi, H., Zhang, X., Sawada, K., Osada, T., Kanda, Y., Sekino, Y., Pang, L., Feaster, T. K., Kettenhofen, R., … Gintant, G. (2018). International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Reports, 24, 3582–3592. https://doi.org/10.1016/j.celrep.2018.08.079

    Article  CAS  PubMed  Google Scholar 

  141. Schwach, V., Slaats, R. H., & Passier, R. (2020). Human pluripotent stem cell-derived cardiomyocytes for assessment of anticancer drug-induced cardiotoxicity. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2020.00050

    Article  PubMed  PubMed Central  Google Scholar 

  142. Maillet, A., Tan, K., Chai, X., Sadananda, S. N., Mehta, A., Ooi, J., Hayden, M. R., Pouladi, M. A., Ghosh, S., Shim, W., & Brunham, L. R. (2016). Modeling doxorubicin-induced cardiotoxicity in human pluripotent stem cell derived-cardiomyocytes. Science and Reports, 6, 25333. https://doi.org/10.1038/srep25333

    Article  CAS  Google Scholar 

  143. Burridge, P. W., Li, Y. F., Matsa, E., Wu, H., Ong, S. G., Sharma, A., Holmström, A., Chang, A. C., Coronado, M. J., Ebert, A. D., Knowles, J. W., Telli, M. L., Witteles, R. M., Blau, H. M., Bernstein, D., Altman, R. B., & Wu, J. C. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 22, 547–556. https://doi.org/10.1038/nm.4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cui, N., Wu, F., Lu, W. J., Bai, R., Ke, B., Liu, T., Li, L., Lan, F., & Cui, M. (2019). Doxorubicin-induced cardiotoxicity is maturation dependent due to the shift from topoisomerase IIα to IIβ in human stem cell derived cardiomyocytes. Journal of Cellular and Molecular Medicine, 23, 4627–4639. https://doi.org/10.1111/jcmm.14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhao, L., & Zhang, B. (2017). Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Science and Reports, 7, 44735. https://doi.org/10.1038/srep44735

    Article  Google Scholar 

  146. McSweeney, K. M., Bozza, W. P., Alterovitz, W.-L., & Zhang, B. (2019). Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discovery, 5, 102. https://doi.org/10.1038/s41420-019-0182-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, J., Wang, P. Y., Long, N. A., Zhuang, J., Springer, D. A., Zou, J., Lin, Y., Bleck, C. K. E., Park, J. H., Kang, J. G., & Hwang, P. M. (2019). p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proceedings of the National Academy of Sciences of the United States of America, 116, 19626–19634. https://doi.org/10.1073/pnas.1904979116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Deng, S., Yan, T., Jendrny, C., Nemecek, A., Vincetic, M., Gödtel-Armbrust, U., & Wojnowski, L. (2014). Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both Topoisomerase II isoforms. BMC Cancer, 14, 842. https://doi.org/10.1186/1471-2407-14-842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ahmed, R. E., Anzai, T., Chanthra, N., & Uosaki, H. (2020). A brief review of current maturation methods for human induced pluripotent stem cells-derived cardiomyocytes. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2020.00178

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pang, L. (2020). Toxicity testing in the era of induced pluripotent stem cells: A perspective regarding the use of patient-specific induced pluripotent stem cell–derived cardiomyocytes for cardiac safety evaluation. Current Opinion in Toxicology, 23–24, 50–55. https://doi.org/10.1016/j.cotox.2020.04.001

    Article  Google Scholar 

  151. Soma, Y., Morita, Y., Kishino, Y., Kanazawa, H., Fukuda, K., & Tohyama, S. (2021). The present state and future perspectives of cardiac regenerative therapy using human pluripotent stem cells. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2021.774389

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Iran National Sciences Foundation (INSF).

Author information

Authors and Affiliations

Authors

Contributions

ARD and MS designed the study. SN, MS, and YA performed the literature search and data analysis. MS and YA drafted the manuscript and edited it. MHF prepared all figures. MS prepared Table 1. FE and SN made critical revision and edited the manuscript. ARD, MS, and MS made final editions to the paper prior to the submission. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

The protocol of this study was approved by the Ethics Committee of Tehran University of Medical Sciences.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheibani, M., Azizi, Y., Shayan, M. et al. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc Toxicol 22, 292–310 (2022). https://doi.org/10.1007/s12012-022-09721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-022-09721-1

Keywords

Navigation