Skip to main content
Log in

Lab-made disposable screen-printed electrochemical sensors and immunosensors modified with Pd nanoparticles for Parkinson’s disease diagnostics

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new conductive ink based on the addition of carbon black to a poly(vinyl alcohol) matrix is developed and investigated for electrochemical sensing and biosensing applications. The produced devices were characterized using morphological and electrochemical techniques and modified with Pd nanoparticles to enhance electrical conductivity and reaction kinetics. With the aid of chemometrics, the parameters for metal deposition were investigated and the sensor was applied to the determination of Parkinson’s disease biomarkers, specifically epinephrine and α-synuclein. A linear behavior was obtained in the range 0.75 to 100 μmol L-1 of the neurotransmitter, and the device displayed a limit of detection (LOD) of 0.051 μmol L-1. The three-electrode system was then tested using samples of synthetic cerebrospinal fluid. Afterward, the device was modified with specific antibodies to quantify α-synuclein using electrochemical impedance spectroscopy. In phosphate buffer, a linear range was obtained for α-synuclein concentrations from 1.5 to 15 μg mL-1, with a calculated LOD of 0.13 μg mL-1. The proposed immunosensor was also applied to blood serum samples, and, in this case, the linear range was observed from 6.0 to 100.5 μg mL-1 of α-synuclein, with a LOD = 1.3 µg mL-1. Both linear curves attend the range for the real diagnosis, demonstrating its potential application to complex matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Camargo JR, Orzari LO, Araujo DAG, de Oliveira PR, Kalinke C, Rocha DP, dos Santos AL, Takeuchi RM, Munoz RAA, Bonacin JA (2021) Development of conductive inks for electrochemical sensors and biosensors. Microchem J 164:105998

    Article  CAS  Google Scholar 

  2. de Freitas RC, Orzari LO, de Oliveira PR, Janegitz BC (2021) Pd and Ag binary nanoparticles supported on carbon black and tapioca for nitrite electrochemical detection. J Electrochem Soc 168:117518

    Article  Google Scholar 

  3. Wang J, Musameh M (2004) Carbon nanotube screen-printed electrochemical sensors. Analyst 129:1–2

    Article  CAS  PubMed  Google Scholar 

  4. Pekarovicova A, Fleming PD (2005) Innovations in Ink and paper technology to improve printability, Pira international Ltd.

  5. de AraujoAndreotti IA, Orzari LO, Camargo JR, Faria RC, Marcolino-Junior LH, Bergamini MF, Gatti A, Janegitz BC (2019) Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink. J Electroanal Chem 840:109–116

    Article  Google Scholar 

  6. Xu J, Guo H, Ding H, Wang Q, Tang Z, Li Z, Sun G (2021) Printable and recyclable conductive ink based on a liquid metal with excellent surface wettability for flexible electronics. ACS Appl Mater Interfaces 13:7443–7452

    Article  CAS  PubMed  Google Scholar 

  7. Htwe YZN, Mariatti M (2021) Surfactant-assisted water-based graphene conductive inks for flexible electronic applications. J Taiwan Inst Chem Eng 125:402–412

    Article  CAS  Google Scholar 

  8. Ahammed SR, Praveen AS (2021) Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink. Int J Simul Multi Design Optim 12:7

    Article  Google Scholar 

  9. Daniele GG, de Souza DC, de Oliveira PR, Orzari LO, Blasques RV, Germscheidt RL, da Silva EC, Pocrifka LA, Bonacin JA, Janegitz BC (2022) Development of disposable and flexible supercapacitor based on carbonaceous and ecofriendly materials. C 8:32

  10. Gevaerd A, Watanabe EY, Janegitz BC, Bergamini MF, Marcolino-Junior LH (2022) Simple melatonin determination using disposable and low-cost lab-made screen-printed carbon electrode. J Electrochem Soc 169:037503

    Article  CAS  Google Scholar 

  11. Stefano JS, Orzari LO, Silva-Neto HA, de Ataíde VN, Mendes LF, Coltro WKT, Paixão TRLC, Janegitz BC (2022) Different approaches for fabrication of low-cost electrochemical sensors. Curr Opin Electrochem 32:100893

    Article  CAS  Google Scholar 

  12. Hayat A, Marty JL (2014) Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors 14:10432–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cagnani GR, Ibáñez-Redín G, Tirich B, Gonçalves D, Balogh DT, Oliveira ON Jr (2020) Fully-printed electrochemical sensors made with flexible screen-printed electrodes modified by roll-to-roll slot-die coating. Biosens Bioelectron 165:112428

    Article  CAS  PubMed  Google Scholar 

  14. Beitollahi H, Mohammadi SZ, Safaei M, Tajik S (2020) Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Anal Methods 12:1547–1560

    Article  Google Scholar 

  15. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis: Int J Devoted Fundam Pract Aspects Electroanalysis 18:319–326

    Article  CAS  Google Scholar 

  16. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619

    Article  CAS  PubMed  Google Scholar 

  17. Orzari LO, Assumpção MHMT, Nandenha J, Neto AO, Junior LHM, Bergamini M, Janegitz BC (2022) Pd, Ag and Bi carbon-supported electrocatalysts as electrochemical multifunctional materials for ethanol oxidation and dopamine determination. Electrochim Acta 428:140932

    Article  CAS  Google Scholar 

  18. Ozawa M, Ōsawa E (2006) Carbon blacks as the source materials for carbon nanotechnology. Elsevier, Carbon Nanotechnology, pp 127–151

    Google Scholar 

  19. Vicentini FC, Ravanini AE, Figueiredo-Filho LCS, Iniesta J, Banks CE, Fatibello-Filho O (2015) Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta 157:125–133

    Article  CAS  Google Scholar 

  20. Vieira Jodar L, Orzari LO, StortiOrtolani T, Assumpção MHMT, Vicentini FC, Janegitz BC (2019) Electrochemical sensor based on casein and carbon black for bisphenol A detection. Electroanalysis 31:2162–2170

    Article  CAS  Google Scholar 

  21. Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio) sensor design. Biosens Bioelectron 156:112033

    Article  CAS  PubMed  Google Scholar 

  22. de Souza DC, Orzari LO, de Oliveira PR, Kalinke C, Bonacin JA, Malaspina O, Nocelli RCF, Janegitz BC (2021) Electrochemical sensor based on beeswax and carbon black thin biofilms for determination of paraquat in apis mellifera honey. Food Anal Methods 14:606–615

    Article  Google Scholar 

  23. Zhang X, Cao Y, Yu S, Yang F, Xi P (2013) An electrochemical biosensor for ascorbic acid based on carbon-supported PdNinanoparticles. Biosens Bioelectron 44:183–190

    Article  PubMed  Google Scholar 

  24. Wei Y, Liu Y, Xu Z, Wang S, Chen B, Zhang D, Fang Y (2020) Simultaneous detection of ascorbic acid, dopamine, and uric acid using a novel electrochemical sensor based on palladium nanoparticles/reduced graphene oxide nanocomposite. Int J Anal Chem 13:881244

    Google Scholar 

  25. Qian Z, Han YU, Die HU, Lin-Lin LI, Jun JIN, Ming-Jun AI, Jian WEI, Kai S (2022) Recent advances in electrochemical sensors based on palladium nanoparticles. Chin J Anal Chem 50:100144

    Article  Google Scholar 

  26. Kp C, Bhat VS, Maiyalagan T, Hegde G, Varghese A, George L (2020) Unique host matrix to disperse Pd nanoparticles for electrochemical sensing of morin: sustainable engineering approach. ACS Biomater Sci Eng 6:5264–5273

    Article  CAS  Google Scholar 

  27. Meng T, Jia H, An S, Wang H, Yang X, Zhang Y (2020) Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of microRNA-21. Sens Actuators, B Chem 323:128621

    Article  CAS  Google Scholar 

  28. Dong S, Yang Z, Liu B, Zhang J, Xu P, Xiang M, Lu T (2021) (Pd, Au, Ag) nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications. J Electroanal Chem 897:115562

    Article  CAS  Google Scholar 

  29. Parkinson J (2002) An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci 14:223–236

    Article  PubMed  Google Scholar 

  30. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:1–21

    Article  Google Scholar 

  31. Sixel-Döring F, Trautmann E, Mollenhauer B, Trenkwalder C (2011) Associated factors for REM sleep behavior disorder in Parkinson disease. Neurology 77:1048–1054

    Article  PubMed  Google Scholar 

  32. Mayeux R, Stern Y, Rosen J, Leventhal J (1981) Depression, intellectual impairment, and Parkinson disease. Neurology 31:645–645

    Article  CAS  PubMed  Google Scholar 

  33. Iacono D, Geraci-Erck M, Rabin ML, Adler CH, Serrano G, Beach TG, Kurlan R (2015) Parkinson disease and incidental Lewy body disease: just a question of time? Neurology 85:1670–1679

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dijkstra AA, Voorn P, Berendse HW, Groenewegen HJ, Netherlands Brain B, Rozemuller AJM, van de Berg WDJ (2014) Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov Disord 29:1244–1251

    Article  PubMed  Google Scholar 

  35. Braak H, Del Tredici K, Rüb U, De Vos RAI, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  36. Dorsey EA, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  CAS  PubMed  Google Scholar 

  37. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, Fox M, Goldstein JM, Soriano F, Seubert P (2008) Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 5:55–59

    Article  CAS  PubMed  Google Scholar 

  38. Carneiro P, Morais S, do Carmo Pereira M (2023) Biosensors for α-synuclein detection: towards an improved diagnosis of Parkinson’s disease. TrAC Trends Anal Chem 166:117–150

  39. Carneiro P, Loureiro JA, Delerue-Matos C, Morais S, do Carmo Pereira M (2023) Nanostructured label–free electrochemical immunosensor for detection of a Parkinson’s disease biomarker. Talanta 252:123838

    Article  CAS  PubMed  Google Scholar 

  40. Aminabad ED, Mobed A, Hasanzadeh M, Feizi MAH, Safaralizadeh R, Seidi F (2022) Sensitive immunosensing of α-synuclein protein in human plasma samples using gold nanoparticles conjugated with graphene: an innovative immuno-platform towards early stage identification of Parkinson’s disease using point of care (POC) analysis. RSC Adv 12:4346–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. An Y, Jiang X, Bi W, Chen H, Jin L, Zhang S, Wang C, Zhang W (2012) Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosens Bioelectron 32:224–230

    Article  CAS  PubMed  Google Scholar 

  42. Fu Y, Jiang C, Tofaris GK, Davis JJ (2020) Facile impedimetric analysis of neuronal exosome markers in Parkinson’s disease diagnostics. Anal Chem 92:13647–13651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu Q, Cheng H, Lehr J, Patil AV, Davis JJ (2015) Graphene oxide interfaces in serum based autoantibody quantification. Anal Chem 87:346–350

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z-H, Hu J, Chen Q, Chen J, Hu X, Koh K, Chen H, Xu X-H (2021) The magnetic-nanoparticle-assisted sensitive detection of nitrated α-syn in blood based on a sensitizing electrochemical layer. Nanoscale 13:8107–8117

    Article  CAS  PubMed  Google Scholar 

  45. Gai WP, Geffen LB, Denoroy L, Blessing WW (1993) Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease. Ann Neurol 33:357–367

    Article  CAS  PubMed  Google Scholar 

  46. Buleandră M, Popa DE, David IG, Ciucu AA (2021) A simple and efficient cyclic square wave voltammetric method for simultaneous determination of epinephrine and norepinephrine using an activated pencil graphite electrode. Microchem J 160:105621

    Article  Google Scholar 

  47. Wierzbicka E, Sulka GD (2016) Fabrication of highly ordered nanoporous thin Au films and their application for electrochemical determination of epinephrine. Sens Actuators, B Chem 222:270–279

    Article  CAS  Google Scholar 

  48. McPherson RA, Pincus MR (2021) Henry’s clinical diagnosis and management by laboratory methods E-book. Elsevier Health Sciences pp 1556–1556

  49. Hou R, Leathersich AM, Ruud BT (2011) Pheochromocytoma presenting with arterial and intracardiac thrombus in a 47-year-old woman: a case report. J Med Case Rep 5:1–7

    Article  Google Scholar 

  50. Cerqueira A, Seco T, Costa A, Tavares M, Cotter J (2020) Pheochromocytoma and paraganglioma: a review of diagnosis, management and treatment of rare causes of hypertension. Cureus 12:1–5

    Google Scholar 

  51. Diamandis C, Honda R, Rocha F, Shirazi A (2023) How to reduce endogenous adrenaline synthesis in patients with a dysfunctional renal medulla using an APZ-BMZ-DXM combination therapy-preliminary report 1:1–7

  52. Wichit P, Thanprasertsuk S, Hopetrungraung T, Phokaewvarangkul O, Bongsebandhu-phubhakdi S, Bhidayasiri R (2020) Increased epinephrine in the saliva of Parkinson’s disease patients: a preliminary observation. Mov Disord S372–S373

  53. Stoica E, Enulescu O (1978) Abnormal epinephrine urinary excretion in Parkinsonians: correction of the disorder by levodopa administration. J Neurol Sci 38:215–227

    Article  CAS  PubMed  Google Scholar 

  54. Muller A, Joseph V, Slesinger PA, Kleinfeld D (2014) Cell-based reporters reveal in vivo dynamics of dopamine and norepinephrine release in murine cortex. Nat Methods 11:1245–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ding Y-S, Lin K-S, Logan J (2006) PET imaging of norepinephrine transporters. Curr Pharm Des 12:3831–3845

    Article  CAS  PubMed  Google Scholar 

  56. Ding YS, Lin KS, Logan J, Benveniste H, Carter P (2005) Comparative evaluation of positron emission tomography radiotracers for imaging the norepinephrine transporter:(S, S) and (R, R) enantiomers of reboxetine analogs ([11C] methylreboxetine, 3-Cl-[11C] methylreboxetine and [18F] fluororeboxetine),(R)-[11C] nisoxetine,[11C] oxaprotiline and [11C] lortalamine. J Neurochem 94:337–351

    Article  CAS  PubMed  Google Scholar 

  57. Yoshitake T, Kehr J, Todoroki K, Nohta H, Yamaguchi M (2006) Derivatization chemistries for determination of serotonin, norepinephrine and dopamine in brain microdialysis samples by liquid chromatography with fluorescence detection. Biomed Chromatogr 20:267–281

    Article  CAS  PubMed  Google Scholar 

  58. van Faassen M, Bischoff R, Eijkelenkamp K, de Jong WHA, van der Ley CP, Kema IP (2020) In matrix derivatization combined with LC-MS/MS results in ultrasensitive quantification of plasma free metanephrines and catecholamines. Anal Chem 92:9072–9078

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ji C, Li W, Ren X-D, El-Kattan AF, Kozak R, Fountain S, Lepsy C (2008) Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates. Anal Chem 80:9195–9203

    Article  CAS  PubMed  Google Scholar 

  60. Kiranmai S, Kuchi C, Sravani B, Ƚuczak T, Kim MJ, Madhavi G, Reddy YVM (2022) Construction of ultrasensitive electrochemical sensor using TiO2-reduced graphene oxide nanofibers nanocomposite for epinephrine detection. Surf Interfaces 35:102455

    Article  CAS  Google Scholar 

  61. Renjini S, Abraham P, Kumary VA, Chithra PG, Sreevalsan K (2022) Progress on carbon-based electrochemical sensors for epinephrine and norepinephrine. J Electrochem Soc 169:046519

    Article  CAS  Google Scholar 

  62. Santhan A, Hwa K-Y (2023) Construction of 2D niobium carbide-embedded silver/silver phosphate as sensitive disposable electrode material for epinephrine detection in biological real samples. Mater Today Chem 27:101332

    Article  CAS  Google Scholar 

  63. Yang X, Zhao P, Xie Z, Ni M, Wang C, Yang P, Xie Y, Fei J (2021) Selective determination of epinephrine using electrochemical sensor based on ordered mesoporous carbon/nickel oxide nanocomposite. Talanta 233:122545

    Article  CAS  PubMed  Google Scholar 

  64. Sipuka DS, Sebokolodi TI, Olorundare FOG, Muzenda C, Nkwachukwu OV, Nkosi D, Arotiba OA (2023) Electrochemical sensing of epinephrine on a carbon nanofibers and gold nanoparticle-modified electrode. Electrocatalysis 14:9–17

    Article  CAS  Google Scholar 

  65. Beitz JM (2014) Parkinson’s disease: a review. Front Biosci-Scholar 6:65–74

    Article  Google Scholar 

  66. Rizek P, Kumar N, Jog MS (2016) An update on the diagnosis and treatment of Parkinson disease. CMAJ 188:1157–1165

    Article  PubMed  PubMed Central  Google Scholar 

  67. de Oliveira GCM, de Souza Carvalho JH, Brazaca LC, Vieira NCS, Janegitz BC (2020) Flexible platinum electrodes as electrochemical sensor and immunosensor for Parkinson’s disease biomarkers. Biosens Bioelectron 152:112016

    Article  PubMed  Google Scholar 

  68. Zamani M, Furst AL (2022) Electricity, chemistry and biomarkers: an elegant and simple package: the potential of electrochemical biosensors for developing novel point-of-care diagnostics. EMBO Rep 23:e55096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Janssen J, Lambeta M, White P, Byagowi A (2019) Carbon nanotube-based electrochemical biosensor for label-free protein detection. Biosensors 9:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Felix FS, Angnes L (2018) Electrochemical immunosensors–a powerful tool for analytical applications. Biosens Bioelectron 102:470–478

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Z, Cong Y, Huang Y, Du X (2019) Nanomaterials-based electrochemical immunosensors. Micromachines 10:397

    Article  PubMed  PubMed Central  Google Scholar 

  72. Skládal P (1997) Advances in electrochemical immunosensors. Electroanalysis 9:737–745

    Article  Google Scholar 

  73. Mollarasouli F, Kurbanoglu S, Ozkan SA (2019) The role of electrochemical immunosensors in clinical analysis. Biosensors 9:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yoon J-Y (2016) Introduction to biosensors: from electric circuits to immunosensors, 1st ed. Springer

  75. Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 84:74–83

    Article  CAS  Google Scholar 

  76. Lim SA, Ahmed MU (2016) Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 6:24995–25014

    Article  CAS  Google Scholar 

  77. Tian N, Zhou Z-Y, Yu N-F, Wang L-Y, Sun S-G (2010) Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J Am Chem Soc 132:7580–7581

    Article  CAS  PubMed  Google Scholar 

  78. Zhang T, Zhu X, Ye D-D, Chen R, Zhou Y, Liao Q (2020) Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells. Nanoscale 12:20270–20278

    Article  CAS  PubMed  Google Scholar 

  79. De Toledo RA, Santos MCD, Cavalheiro ETG, Mazo LH (2005) Determination of dopamine in synthetic cerebrospinal fluid by SWV with a graphite–polyurethane composite electrode. Anal Bioanal Chem 381:1161–1166

    Article  PubMed  Google Scholar 

  80. Vicentini FC, Raymundo-Pereira PA, Janegitz BC, Machado SAS, Fatibello-Filho O (2016) Nanostructured carbon black for simultaneous sensing in biological fluids. Sens Actuators, B Chem 227:610–618

    Article  CAS  Google Scholar 

  81. Freitas RC, Orzari LO, Ferreira LMC, Paixao TRLC, Coltro WKT, Vicentini FC, Janegitz BC (2021) Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode. J Electroanal Chem 897:115550

    Article  CAS  Google Scholar 

  82. Day TM, Unwin PR, Macpherson JV (2007) Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes. Nano Lett 7:51–57

    Article  CAS  PubMed  Google Scholar 

  83. Hammons JA, Muselle T, Ustarroz J, Tzedaki M, Raes M, Hubin A, Terryn H (2013) Stability, assembly, and particle/solvent interactions of Pd nanoparticles electrodeposited from a deep eutectic solvent. J Phys Chem C 117:14381–14389

    Article  CAS  Google Scholar 

  84. Platt M, Dryfe RAW, Roberts EPL (2004) Structural and electrochemical characterisation of Pt and Pd nanoparticles electrodeposited at the liquid/liquid interface. Electrochim Acta 49:3937–3945

    Article  CAS  Google Scholar 

  85. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206

    Article  CAS  Google Scholar 

  86. Mattioli IA, Cervini P, Cavalheiro ÉTG (2020) Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: a comparative study. Microchim Acta 187(1):1–12

    Google Scholar 

  87. Salimi A, Alizadeh V, Compton RG (2005) Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film. Anal Sci 21:1275–1280

    Article  CAS  PubMed  Google Scholar 

  88. Apetrei IM, Apetrei C (2014) Study of different carbonaceous materials as modifiers of screen-printed electrodes for detection of catecholamines. IEEE Sens J 15:3094–3101

    Article  Google Scholar 

  89. Hauptman N, Vesel A, Ivanovski V, Gunde MK (2012) Electrical conductivity of carbon black pigments. Dyes Pigm 95:1–7

    Article  CAS  Google Scholar 

  90. Artyushkova K, Pylypenko S, Dowlapalli M, Atanassov P (2012) Structure-to-property relationships in fuel cell catalyst supports: correlation of surface chemistry and morphology with oxidation resistance of carbon blacks. J Power Sources 214:303–313

    Article  CAS  Google Scholar 

  91. Lović J, Stevanović S, Anđelković BD, Petrović S, Vuković D, Prlainović N, Mijin D, Nikolić N, Avramov-Ivić M (2018) Electrochemical glucose biosensor with the characterization of surface morphology and content of glucose oxidase-glutaraldehyde-cysteine layers on gold electrode. Int J Electrochem Sci 13:12340–12348

    Article  Google Scholar 

  92. Oberhaus FV, Frense D, Beckmann D (2020) Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review. Biosensors 10:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Welch NG, Scoble JA, Muir BW, Pigram PJ (2017) Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases 12:02D301

    Article  PubMed  Google Scholar 

  94. Munoz J, Pumera M (2021) 3D-Printed COVID-19 immunosensors with electronic readout. Chem Eng J 425:131433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Layqah LA, Eissa S (2019) An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim Acta 186:1–10

    Article  CAS  Google Scholar 

  96. Ozoemena OC, Ehirim TJ, Khawula T, Makgopa K, Shai LJ, Ozoemena KI (2021) Bovine serum albumin-dependent charge-transfer kinetics controls the electrochemical immunosensitive detection: Vibrio cholerae as a model bioanalyte. Electrocatalysis 12:595–604

    Article  CAS  PubMed  Google Scholar 

  97. Yang X, Li H, Zhao X, Liao W, Zhang CX, Yang Z (2020) A novel, label-free liquid crystal biosensor for Parkinson’s disease related alpha-synuclein. Chem Commun 56:5441–5444

    Article  CAS  Google Scholar 

  98. El-Agnaf OMA, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D (2006) Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20:419–425

    Article  CAS  PubMed  Google Scholar 

  99. Ge C-Y, Rahman MM, Zhang W, Lopa NS, Jin L, Yoon S, Jang H, Xu G-R, Kim W (2020) An electrochemical immunosensor based on a self-assembled monolayer modified electrode for label-free detection of α-synuclein. Sensors 20:617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Hassanzadeh-Khayat M, Emrani AS, Abnous K (2019) A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer. Biosens Bioelectron 123:14–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, #2019/23342-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 88887.504861/2020-00 and 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq #380632/2023-3; 301796/2022-0), and Financiadora de Estudos e Projetos (FINEP, MARTMA, #01.22.0179.00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Campos Janegitz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1181 KB)

Supplementary file2 (MP4 10978 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orzari, L.O., Silva, L.R.G.e., de Freitas, R.C. et al. Lab-made disposable screen-printed electrochemical sensors and immunosensors modified with Pd nanoparticles for Parkinson’s disease diagnostics. Microchim Acta 191, 76 (2024). https://doi.org/10.1007/s00604-023-06158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06158-3

Keywords

Navigation