Skip to main content
Log in

Determination of dopamine in synthetic cerebrospinal fluid by SWV with a graphite–polyurethane composite electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work describes an electroanalytical investigation of dopamine using cyclic voltammetry (CV) and the graphite–polyurethane composite electrode (GPU). In CV studies, well-defined redox peaks characterize the oxidation process at the GPU electrode, which is indicative of electrocatalytic effects associated with active sites on the GPU electrode surface. A new analytical methodology was developed using the GPU electrode and square wave voltammetry (SWV) in BR buffer solution (0.1 mol L−1; pH 7.4). Analytical curves were constructed under optimized conditions (f=60s−1, ΔEa=50 mV, ΔEI=2 mV) and detection and quantification limits of 6.4×10−8 mol L−1 (12.1 μg L−1) and 5.2×10−6 mol L−1 (0.9 mg L−1), respectively, were achieved. The precision of the method was checked by performing ten successive measurements for a 9.9×10−6 mol L−1 dopamine solution. For intra-assay and inter-assay precisions, the relative standard deviations were 1.9 and 2.3%, respectively. In order to evaluate the developed methodology, the determination of dopamine was performed with good sensitivity and selectivity, without the interference of ascorbic acid in synthetic cerebrospinal fluid, which indicates that the new methodology enables reliable analysis of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun Y, Baoxian Y, Zhang W, Zhou X (1998) Anal Chim Acta 363:75–80

    Article  CAS  Google Scholar 

  2. Stamford JA, Palij P, Davidson C, Trout SJ (1995) Bioelectrochem Bioenerg 38:289–296

    Google Scholar 

  3. Davidson C, Ellinwood EH, Douglas SB, Lee TH (2000) J Neurol Methods 101:75–83

    Google Scholar 

  4. Ghita M, Arrigan DWM (2004) Electrochim Acta 49:4743–4751

    Google Scholar 

  5. Zhang L, Jia J, Zou X, Dong S (2004) Electroanalysis 16:1413–1418

    Article  Google Scholar 

  6. Zhao H, Zhang Y, Yuan Z (2002) Electroanalysis 14:1031–1034

    Google Scholar 

  7. Raj CR, Tokuda K, Ohsaka T (2001) Bioelectrochemistry 53:183–191

    Google Scholar 

  8. Zhao H, Zhang Y, Yuan Z (2001) Anal Chim Acta 441:117–122

    Google Scholar 

  9. Dávila MM, Elizalde MP, Mattusch J, Wennrich R (2001) Electrochem Acta 46:3189–3197

    Google Scholar 

  10. Liu T, Li M, Li Q (2004) Talanta 63:1053–1059

    Google Scholar 

  11. Roy PR, Okajima T, Ohsaka T (2003) Bioelectrochemistry 59:11–19

    Article  CAS  PubMed  Google Scholar 

  12. Murray RW, Ewing AG, Durst RA (1987) Anal Chem 59:379A–385A

    Google Scholar 

  13. Mendes RK, Claro Neto S, Cavalheiro ETG (2002) Talanta 257:909–917

    Google Scholar 

  14. Oser BL (1966) Hawk’s physiological chemistry. TATA McGraw-Hill, New Delhi

    Google Scholar 

  15. Zhang F, Yang L, Shuping B, Liu J, Liu F, Wang X, Yang X, Gan N, Yu T, Hu J, Li H, Yang T (2001) J Inorg Biol 87:105–113

    Google Scholar 

  16. Bard AJ, Kaulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  17. Gosser DK Jr (1994) Cyclic voltammetry simulation and analysis of reaction mechanisms. VCH Publishers, New York

    Google Scholar 

  18. Lovric M, Komorsky-Lovric S (1988) J Electroanal Chem 248:239–253

    Article  CAS  Google Scholar 

  19. Miller JC, Miller JN (1988) Statistics for analytical chemistry, 2nd edn. Ellis Horwood, Chichester

    Google Scholar 

  20. http://www.iupac.org/divisions/V/501/draftoct19.pdf

  21. Xiao L, Chen J, Cha C (2000) J Electroanal Chem 495:27–35

    Google Scholar 

  22. Malinauskas A, Garjonyté R, Maeikiené R, Jureviciuté I (2004) Talanta 64:121–129

    Google Scholar 

  23. Kawagoe TK, Wightman RM (1994) Talanta 41:865–874

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to FAPESP (Processes: 01/14629-0, 01/06029-3 and 03/02630-0), CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Mazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Toledo, R.A., Santos, M.C., Cavalheiro, E.T.G. et al. Determination of dopamine in synthetic cerebrospinal fluid by SWV with a graphite–polyurethane composite electrode. Anal Bioanal Chem 381, 1161–1166 (2005). https://doi.org/10.1007/s00216-005-3066-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3066-y

Keywords

Navigation