Skip to main content
Log in

Fabrication of multifunctional g-C3N4-modified Au/Ag NRs arrays for ultrasensitive and recyclable SERS detection of bisphenol A residues

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Monolayer g-C3N4-modified Au/Ag nanorods (g-C3N4/Au/Ag NRs) array is fabricated as a dual-function platform with high surface-enhanced Raman scattering (SERS) response and excellent photocatalytic degradation ability for bisphenol A (BPA) residues. FDTD simulation results of Au/Ag NRs proves that the electromagnetic field intensity is significantly enhanced at the gap of Ag NRs and Au NPs and the protrusion of Au NPs, which endows the arrays with excellent SERS activity. The arrays exhibit high sensitivity for rhodamine 6G (R6G) (LOD = 1.1 × 10-11 mol/L) and high SERS enhancement (EF = 9.2 × 107). In addition, the g-C3N4/Au/Ag NRs could degrade ˃90% of BPA adsorbed on the substrate surface within 140 min under visible light irradiation, and maintains its SERS activity after repeated use for 4 times. The dual-function platform with high SERS response and excellent recycling capability is proved to be reliable and is very promising for monitoring of BPA residues in food.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Mondal S, Subramaniam C (2020) Xenobiotic Contamination of Water by Plastics and Pesticides Revealed through Real-Time, Ultrasensitive, and Reliable Surface-Enhanced Raman Scattering. ACS Sustain Chem Eng 8:7639–7648

    Article  CAS  Google Scholar 

  2. Pham X-H, Hahm E, Kim TH, Kim H-M, Lee SH, Lee SC, Kang H, Lee H-Y, Jeong DH, Choi HS, Jun B-H (2020) Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res 13:3338–3346

    Article  CAS  Google Scholar 

  3. Zhang L, Wang B, Ma W, Li B, Liu Y, Du Y (2022) Fe3C/Fe nanoparticles decorated three-dimensional nitrogen-doped carbon foams for highly efficient bisphenol A removal through peroxymonosulfate activation. Chem Eng J 437:135472

    Article  CAS  Google Scholar 

  4. Li D, Li C, Wang H, Li J, Zhao Y, Jiang X, Wen G, Liang A, Jiang Z (2021) Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants. Microchim Acta 188:175

    Article  CAS  Google Scholar 

  5. Gao M, Yao J, Li J, Su R, Liu Y, Chen L, Yang J (2022) A novel strategy for improving SERS activity by cerium ion f → d transitions for rapid detection of endocrine disruptor. Chem Eng J 430:131467

    Article  CAS  Google Scholar 

  6. Adegoke EO, Rahman MS, Amjad S, Pang W-K, Ryu D-Y, Park Y-J, Pang M-G (2022) Bisphenol A damages testicular junctional proteins transgenerationally in mice. Environ Pollut 302:119067

    Article  CAS  PubMed  Google Scholar 

  7. Quan Y, Su R, Yang S, Chen L, Wei M, Liu H, Yang J, Gao M, Li B (2021) In-situ surface-enhanced Raman scattering based on MTi20 nanoflowers: Monitoring and degradation of contaminants. J Haz Mat 412:125209

    Article  CAS  Google Scholar 

  8. Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Jiang X, Zhao B (2018) SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk. Talanta 179:37–42

    Article  CAS  PubMed  Google Scholar 

  9. Watabe Y, Kondo T, Imai H, Morita M, Tanaka N, Haginaka J, Hosoya K (2004) Improved Detectability with a Polymer-based Trapping Device in Rapid HPLC Analysis for Ultra-low Levels of Bisphenol A (BPA) in Environmental Samples. Anal Sci 20:133–137

    Article  CAS  PubMed  Google Scholar 

  10. Pogrmic-Majkic K, Samardzija Nenadov D, Fa S, Stanic B, Trninic Pjevic A, Andric N (2019) BPA activates EGFR and ERK1/2 through PPARγ to increase expression of steroidogenic acute regulatory protein in human cumulus granulosa cells. Chemosphere 229:60–67

    Article  CAS  PubMed  Google Scholar 

  11. Sajiki J, Hasegawa Y, Hashimoto H, Makabe Y, Miyamoto F, Yanagibori R, Shin J, Shimidzu Y, Morigami T (2008) Determination of Bisphenol A (BPA) in Plasma of Hemodialysis Patients Using Three Methods: LC/ECD, LC/MS, and ELISA. Toxicol Mech Methods 18:733–738

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Zhang X, Luo C, Liu Z, Chen Y, Dong S, Jiang C, Yang S, Wang F, Xiao X (2019) Volume-Enhanced Raman Scattering Detection of Viruses. Small 15:1805516

    Article  Google Scholar 

  13. Ding Q, Kang Y, Li W, Sun G, Liu H, Li M, Ye Z, Zhou M, Zhou J, Yang S, Phys J (2019) Bioinspired Brochosomes as Broadband and Omnidirectional Surface-Enhanced Raman Scattering Substrates. Chem. Lett. 10:6484–6491

    CAS  Google Scholar 

  14. Qu L-L, Liu Y-Y, He S-H, Chen J-Q, Liang Y, Li H-T (2016) Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens. Bioelectron 77:292–298

    Article  CAS  PubMed  Google Scholar 

  15. Qu L-L, Song Q-X, Li Y-T, Peng M-P, Li D-W, Chen L-X, Fossey JS, Long Y-T (2013) Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Anal Chim Acta 792:86–92

    Article  CAS  PubMed  Google Scholar 

  16. Xu T, Luo Y, Liu C, Zhang X, Wang S (2020) Integrated Ultrasonic Aggregation-Induced Enrichment with Raman Enhancement for Ultrasensitive and Rapid Biosensing. Anal. Chem 92:7816–7821

    Article  CAS  PubMed  Google Scholar 

  17. Qu LL, Liu Y-Y, Liu M-K, Yang G-H, Li D-W, Li H-T (2016) Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics. ACS Appl Mater Interfaces 8:28180–28186

    Article  CAS  PubMed  Google Scholar 

  18. Amin MU, Zhang R, Li L, You H, Fang J (2021) Solution-Based SERS Detection of Weak Surficial Affinity Molecules Using Cysteamine-Modified Au Bipyramids. Anal. Chem 93:7657–7664

    Article  CAS  PubMed  Google Scholar 

  19. Zhang F-L, Yi J, Peng W, Radjenovic PM, Zhang H, Tian Z-Q, Li J-F (2019) Elucidating Molecule–Plasmon Interactions in Nanocavities with 2 nm Spatial Resolution and at the Single-Molecule Level. Angew Chem Int Ed 58:12133–12137

    Article  CAS  Google Scholar 

  20. Wang Y, Zhang K, Huang X, Qiao L, Liu B (2021) Mass Spectrometry Imaging of Mass Tag Immunoassay Enables the Quantitative Profiling of Biomarkers from Dozens of Exosomes. Anal Chem 93:709–714

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Zhu A, Tian Y (2013) An electrochemical strategy for fast monitoring of ˙OH released from live cells at an electroactive FcHT-functional surface amplified by Au nanoparticles. Chem Commun 49:1279–1281

    Article  CAS  Google Scholar 

  22. Li R, Mao H, Shi M, Zhao Q, Chen D, Xiong J (2020) Parahydrophobic 3D nanohybrid substrates with two pathways of molecular enrichment and multilevel plasmon hybridization. Sensor Actuat B: Chem 320:128357

    Article  CAS  Google Scholar 

  23. Wang S, Sun B, Jiang H, Jin Y, Feng J, An F, Wang H, Xu W (2022) Facile and robust fabrication of hierarchical Au nanorods/Ag nanowire SERS substrates for the sensitive detection of dyes and pesticides. Anal Method 14:1041–1050

  24. Zheng X, Guo H, Xu Y, Zhang J (2020) L. Wang, Improving SERS sensitivity of TiO2 by utilizing the heterogeneity of facet-potentials. J Mater Chem C 8: 13836-13842.

    Article  CAS  Google Scholar 

  25. Fularz A, Almohammed S, Rice JH (2020) Oxygen Incorporation-Induced SERS Enhancement in Silver Nanoparticle-Decorated ZnO Nanowires. ACS Appl Nano Mater 3:1666–1673

    Article  CAS  Google Scholar 

  26. Kusaka H, Ishibiki R, Toyoda M, Fujita T, Tokunaga T, Yamamoto A, Miyakawa M, Matsushita K, Miyazaki K, Li L, Shinde SL, Lima MSL, Sakurai T, Nishibori E, Masuda T, Horiba K, Watanabe K, Saito S, Miyauchi M et al (2021) Crystalline boron monosulfide nanosheets with tunable bandgaps. J Mater Chem A 9:24631–24640

    Article  CAS  Google Scholar 

  27. Wei W, Lin H, Hao T, Su X, Jiang X, Wang S, Hu Y, Guo Z (2021) Dual-mode ECL/SERS immunoassay for ultrasensitive determination of Vibrio vulnificus based on multifunctional MXene. Sensor Actuat B: Chem 33:129525

    Article  Google Scholar 

  28. Wang X, Liu M (2019) Photocatalytic enhancement mechanism of direct Z-scheme heterojunction O-g-C3N4@Fe-TiO2 under visible-light irradiation. Appl Surf Sci 485:353–360

    Article  CAS  Google Scholar 

  29. Zhang W, Zhang Z, Kwon S, Zhang F, Stephen B, Kim KK, Jung R, Kwon S, Chung K-B, Yang W (2017) Photocatalytic improvement of Mn-adsorbed g-C3N4. Appl Catal B: Environ 206:271–281

    Article  CAS  Google Scholar 

  30. Frens G (1973) Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  31. Rodríguez-Fernández J, Pérez-Juste J, García de Abajo FJ, Liz-Marzán LM (2006) Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes. Langmuir 22:7007–7010

    Article  PubMed  Google Scholar 

  32. Zhang W, Zhang Z, Choi SH, Yang W (2019) Facile enhancement of photocatalytic efficiency of g-C3N4 by Li-intercalation. Catal Today 321:67–73

  33. Qu L, Wang N, Xu H, Wang W, Liu Y, Kuo L, Yadav TP, Wu J, Joyner J, Song Y, Li H, Lou J, Vajtai R, Ajayan PM (2017) Facile enhancement of photocatalytic efficiency of g-C3N4 by Li-intercalation. Adv. Funct. Mater 27:1701714

    Article  Google Scholar 

  34. Park M, Hwang CSH, Jeong K-H (2018) Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS Appl Mater Interfaces 10:290–295

    Article  CAS  PubMed  Google Scholar 

  35. Si S, Liang W, Sun Y, Huang J, Ma W, Liang Z, Bao Q, Jiang L (2016) Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates. Adv Funct Mater 26:8137–8145

    Article  CAS  Google Scholar 

  36. Zeng F, Duan W, Zhu B, Mu T, Zhu L, Guo J, Ma X (2019) Paper-Based Versatile Surface-Enhanced Raman Spectroscopy Chip with Smartphone-Based Raman Analyzer for Point-of-Care Application. Anal Chem 91:1064–1070

    Article  CAS  PubMed  Google Scholar 

  37. Santangeli S, Consales C, Pacchierotti F, Habibi HR, Carnevali O (2019) Transgenerational effects of BPA on female reproduction. Sci Total Environ 685:1294–1305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21974055 and 22001099), the Fund of Xuzhou Science and Technology Key R&D Program (Social Development) Project (No. KC20178).

Author information

Authors and Affiliations

Authors

Contributions

Xinyu Liu: Conceptualization, Methodology, Investigation, Writing – original draft. Yang Yu: Investigation, Visualization, Writing – original draft. Tianhua Xie: Investigation. Zijin Cao: Investigation. Zhiyan Li: Investigation. Yuejing Li: Investigation. Yingqiu Gu: Conceptualization, Methodology, Supervision, Writing – review & editing. Caiqin Han: Conceptualization, Methodology, Writing – review & editing. Guohai Yang: Investigation. Lulu Qu: Conceptualization, Methodology, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Yingqiu Gu, Caiqin Han or Lulu Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Fig. S1-Fig. S4, Table S1-S3, and Text S1. Supplementary data associated with this article can be found, in the online version, at …… (DOCX 7223 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yu, Y., Xie, T. et al. Fabrication of multifunctional g-C3N4-modified Au/Ag NRs arrays for ultrasensitive and recyclable SERS detection of bisphenol A residues. Microchim Acta 191, 51 (2024). https://doi.org/10.1007/s00604-023-06136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06136-9

Keywords

Navigation