Skip to main content
Log in

Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA), as a typical endocrine disruptor, poses a serious threat to human health. Therefore, it is urgent to establish a rapid, sensitive, and simple method for the determination of BPA. In this paper, based on the aptamer-mediated single-atom Fe carbon dot catalyst (SAFe) catalyzing the HAuCl4-ethylene glycol (EG) nanoreaction, a new SERS/RRS di-mode detection method for BPA was established. The results show that SAFe exhibits a strong catalytic effect on the HAuCl4-EG nanoreaction, which could generate purple gold nanoparticles (AuNPs) with resonance Rayleigh scattering (RRS) signals and surface-enhanced Raman scattering (SERS) effects. After the addition of BPA aptamer (Apt), it could encapsulate SAFe through intermolecular interaction, thus inhibiting its catalytic action, resulting in the reduction of AuNPs generated and the decrease of RRS and SERS signals of the system. With the addition of BPA, Apt was specifically combined with BPA, and SAFe was re-released to restore the catalytic ability; the generated AuNPs increased. As a result of this RRS and SERS signals of the system recovered, and their increment was linear with the concentration of BPA. Thus, the quantification of 0.1–4.0 nM (RRS) and 0.1–12.0 nM (SERS) BPA was realized, and the detection limits were 0.08 nM and 0.03 nM, respectively. At the same time, we used molecular spectroscopy and electron microscopy to study the SAFe-HAuCl4-ethylene glycol indicator reaction, and proposed a reasonable SAFe catalytic reaction mechanism.

Graphical abstract

Based on Apt-mediated SAFe catalysis gold nanoreaction amplification, a SERS/RRS di-mode analytical platform was established for targets such as BPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ostovar B, Cai Y, Ahmadivand A et al (2020) Increased intraband transitions in smaller gold nanorods enhance light emission. ACS Nano 14:15757–15765

    Article  PubMed  Google Scholar 

  2. Hack D, Deckers K, Chauhan P et al (2016) Asymmetric synthesis of spiropyrazolones by sequential organo- and silver catalysis. Angew Chem 128:1829–1832

    Article  Google Scholar 

  3. Cai Y, Bhattacharjee U, Zhang R et al (2019) Single-particle emission spectroscopy resolves d-hole relaxation in copper nanocubes. ACS Energy Lett 4:2458–2465

    Article  CAS  Google Scholar 

  4. Renard D, Tian S, Ahmadivand A et al (2019) Polydopamine stabilized aluminum nanocrystals: aqueous stability and benzo[a]pyrene detection. ACS Nano 13(3):3117-3124. https://doi.org/10.1021/acsnano.8b08445

  5. Okumura S, Komine T, Shigeki E, Semba K, Nakao Y (2018) Site-selective linear alkylation of anilides by cooperative nickel/aluminum catalysis. Angew Chem Int Ed 57:929–932

    Article  CAS  Google Scholar 

  6. Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y (2017) Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358:1419–1423

    Article  CAS  PubMed  Google Scholar 

  7. Huang W, Wang G, Li W, Li T (2020) Porous ligand creates new reaction route: bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 6:1–14

    Article  Google Scholar 

  8. Chen Z, Vorobyeva E, Mitchell S, Fako E, Ortuño MA, López N, Collins SM, Midgley PA, Richard S, Vilé G, Pérez-Ramírez J (2018) A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotech 13:702–707

    Article  CAS  Google Scholar 

  9. Hou T, Peng H, Xin Y, Wang S, Zhu W, Chen L, Yao Y, Zhang W, Liang S, Wang L (2020) Fe single-atom catalyst for visible-light-driven photofixation of nitrogen sensitized by triphenylphosphine and sodium iodide. ACS Catal 10:5502–5510

    Article  CAS  Google Scholar 

  10. Qu Y, Wang L, Li Z, Li P, Zhang Q, Lin Y, Zhou F, Wang H, Yang Z, Hu Y, Zhu M, Zhao X, Han X, Wang C, Xu Q, Gu L, Luo J, Zheng L, Wu Y (2019) Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv Mater 31:1904496–1904513

    Article  CAS  Google Scholar 

  11. Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y (2018) Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun 9:1460–1470

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan Y, Chen Y, Wu K, Chen Z, Liu S, Cao X, Cheong WC, Meng T, Luo J, Zheng L, Liu C, Wang D, Peng Q, Li J, Chen C (2019) Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat Commun 10:4290–4301

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiao L, Xu W, Yan H, Wu Y, Liu C, du D, Lin Y, Zhu C (2019) Fe–N–C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal Chem 91:11994–11999

    Article  CAS  PubMed  Google Scholar 

  14. Cheng N, Li J, Liu D et al (2019) Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15:1901485–1901492

    Article  CAS  Google Scholar 

  15. Chen Q, Li S, Liu Y, Zhang X, Tang Y, Chai H, Huang Y (2020) Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sensors Actuators B Chem 305:127511–127531

    Article  CAS  Google Scholar 

  16. Biniuri Y, Luo G, Fadeev M et al (2019) Redox-switchable binding properties of the ATP–aptamer. J Am Chem Soc 141:15567–15576

    Article  CAS  PubMed  Google Scholar 

  17. Zhang T, Tian T, Zhou R, Li S, Ma W, Zhang Y, Liu N, Shi S, Li Q, Xie X, Ge Y, Liu M, Zhang Q, Lin S, Cai X, Lin Y (2020) Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc 15:2728–2757

    Article  CAS  PubMed  Google Scholar 

  18. Liao Q, Wei B, Luo L (2017) Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim Acta 184:627–632

    Article  CAS  Google Scholar 

  19. Wang W, Wang Y, Pan H, Cheddah S, Yan C (2019) Aptamer-based fluorometric determination for mucin 1 using gold nanoparticles and carbon dots. Microchim Acta 186:544–552

    Article  CAS  Google Scholar 

  20. Raouafi A, Sánchez A, Raouafi N, Villalonga R (2019) Electrochemical aptamer-based bioplatform for ultrasensitive detection of prostate specific antigen. Sensors Actuators B Chem 297:126762–126768

    Article  CAS  Google Scholar 

  21. Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z (2020) Nanosol SERS quantitative analytical method: a review. Trends Anal Chem 127:115885–115899

    Article  CAS  Google Scholar 

  22. Das R, Parveen S, Bora A, Giri PK (2020) Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots. Carbon 160:273–286

    Article  CAS  Google Scholar 

  23. Li C, Fan P, Liang A, Liu Q, Jiang Z (2018) Aptamer based determination of Pb(II) by SERS and by exploiting the reduction of HAuCl4 by H2O2 as catalyzed by graphene oxide nanoribbons. Microchim Acta 185:177–183

    Article  Google Scholar 

  24. Oliveira MJS, Rubira RJG, Furini LN, Batagin-Neto A, Constantino CJL (2020) Detection of thiabendazole fungicide/parasiticide by SERS: quantitative analysis and adsorption mechanism. Appl Surf Sci 517:145786–145805

    Article  CAS  Google Scholar 

  25. Lê QT, Ly NH, Lim SH, Son SJ (2021) Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J Hazard Mater 402:123499–123506

    Article  PubMed  Google Scholar 

  26. Liu Y, Huang C (2013) Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys. ACS Nano 7:11026–11034

    Article  CAS  PubMed  Google Scholar 

  27. Liang A, Liu Q, Wen G, Jiang Z (2012) The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. Trends Anal Chem 37:32–47

    Article  CAS  Google Scholar 

  28. Cai H, Pi J, Lin X et al (2015) Gold nanoprobes-based resonance Rayleigh scattering assay platform: sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression. Biosens Bioelectron 74:165–169

    Article  CAS  PubMed  Google Scholar 

  29. Ren W, Zhang Y, Chen H et al (2016) Ultrasensitive label-free resonance Rayleigh scattering aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification. Anal Chem 88:1385–1390

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Zhang Z, Chen C, Liang A, Jiang Z (2021) Fullerene carbon dot catalytic amplification-aptamer assay platform for ultratrace As+3 utilizing SERS/RRS/Abs trifunctional Au nanoprobes. J Hazard Mater 403:123633–123643

    Article  CAS  PubMed  Google Scholar 

  31. Li C, Yao D, Jiang X et al (2020) Strong nanocatalysis of silver-doped carbon nitride and its application to aptamer SERS and RRS coupled dual-mode detection of ultra-trace K+. J Mater Chem C 6:972–979

    Google Scholar 

  32. Qi Y, He J, Xiu F et al (2019) A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchem J 147:789–796

    Article  CAS  Google Scholar 

  33. Lee S, Kim M, Lee S, Lee E (2019) Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Food Chem 287:205–213

    Article  CAS  PubMed  Google Scholar 

  34. Yun W, Wu H, Chen L, Yang L (2018) Dual enzyme-free amplification strategy for ultra-sensitive fluorescent detection of bisphenol A in water. Anal Chim Acta 1020:104–109

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Li H, Du G, Xu Z (2010) Electrochemical detection of bisphenol A mediated by [Ru(bpy)3]2+ on an ITO electrode. J Hazard Mater 180:703–709

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Yan R, Liao S, Miao Y, Zhang B, Wang F, Yang H (2018) In situ reduced silver nanoparticles embedded molecularly imprinted reusable sensor for selective and sensitive SERS detection of bisphenol A. Appl Surf Sci 457:323–331

    Article  CAS  Google Scholar 

  37. Lin P, Hsieh C, Hsieh S (2017) Rapid and sensitive SERS detection of bisphenol A using self-assembled graphitic substrates. Sci Rep 7:16698–16704

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ren X, Qi J, Li X (2018) Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchim Acta 185:242–248

    Article  Google Scholar 

  39. Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Jiang X, Zhao B (2018) SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk. Talanta 179:37–42

    Article  CAS  PubMed  Google Scholar 

  40. Liu S, Li N, Han L et al (2018) Size-dependent modulation of fluorescence and light scattering: a new strategy for development of ratiometric sensing. Mater Horiz 5:454–460

    Article  CAS  Google Scholar 

  41. Lindquist NC, de Albuquerque CDL, Paci I, Brolo AG (2019) High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat Nanotechnol 14:981–987

    Article  CAS  PubMed  Google Scholar 

  42. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and chart. Wiley, New York, pp 1–362

    Google Scholar 

  43. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  44. Yang H, Zha J, Zhang P, Qin Y, Chen T, Ye F (2017) Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol. Sensors Actuators B Chem 247:469–478

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21667006, 21767004) and Innovation Project of Guangxi Graduate Education (YCSW2020096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihui Liang or Zhiliang Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, C., Wang, H. et al. Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants. Microchim Acta 188, 175 (2021). https://doi.org/10.1007/s00604-021-04828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04828-8

Keywords

Navigation