Skip to main content
Log in

Recent advances in metal-organic framework (MOF)-based agricultural sensors for metal ions: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal ions have great significance for agricultural development, food safety, and human health. In turn, there exists an imperative need for the development of novel, sensitive, and reliable sensing techniques for various metal ions. Agricultural sensors for the diagnosis of both agricultural safety and nutritional health can establish quality and safety traceability systems of both agro-products and food to guarantee human health, even life safety. Metal-organic frameworks (MOFs) are utilized widely for the design of diversified sensors due to their distinctive structural characteristics and extraordinary optical and electrical properties. To serve agricultural sensors better, this review is dedicated to providing a brief overview of the synthesis of MOFs, the modification of MOFs, the fabrication of MOF-based film electrodes, the applications of MOF-based agricultural sensors for metal ions, which are centered on electrochemical sensors and optical sensors, and current challenges of MOF-based agricultural sensors. In addition, this review also provides potential future opportunities for the development and practical application of agricultural sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig 2
Fig. 3
Scheme 5
Fig. 4
Fig. 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9

Similar content being viewed by others

References

  1. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521. https://doi.org/10.1007/s10311-019-00891-z

    Article  CAS  Google Scholar 

  2. Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. https://doi.org/10.1016/j.bios.2017.03.031

    Article  CAS  PubMed  Google Scholar 

  3. Yang Y, Yan G, Lin Q (2004) Determination of heavy metal ions in chinese herbal medicine by microwave digestion and RP-HPLC with UV-Vis detection. Microchim Acta 144:297–302. https://doi.org/10.1007/s00604-003-0020-6

    Article  CAS  Google Scholar 

  4. Heltai G, Győri Z, Fekete I, Halász G, Kovács K, Takács A, Khumalo L, Horváth M (2019) Application of flexible multi-elemental ICP-OES detection in fractionation of potentially toxic element content of solid environmental samples by a sequential extraction procedure. Microchem J 149:1–7. https://doi.org/10.1016/j.microc.2019.104029

    Article  CAS  Google Scholar 

  5. Li M, Zhou P, Wang X, Wen Y, Xu L, Hu J, Huang Z, Li M (2021) Development of a simple disposable laser-induced porous graphene flexible electrode for portable wireless intelligent votammetric nanosensing of salicylic acid in agro-products. Comput Electron Agric 191:1–9. https://doi.org/10.1016/j.compag.2021.106502

    Article  Google Scholar 

  6. Sawan S, Errachid A, Maalouf R, Jaffrezic-Renault N (2022) Aptamers functionalized metal and metal oxide nanoparticles: recent advances in heavy metal monitoring. TrAC. Trends Anal Chem 157:1–15. https://doi.org/10.1016/j.trac.2022.116748

    Article  CAS  Google Scholar 

  7. Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y (2019) Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta 186:1–17. https://doi.org/10.1007/s00604-019-3248-5

    Article  CAS  Google Scholar 

  8. Tajik S, Beitollahi H, Garkani Nejad F, Sheikhshoaie I, Nugraha A, Jang H, Yamauchi Y, Shokouhimehr M (2021) Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J Mater Chem A 9:8195–8220. https://doi.org/10.1039/d0ta08344e

    Article  CAS  Google Scholar 

  9. Liu C, Li J, Pang H (2020) Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 410:1–39. https://doi.org/10.1016/j.ccr.2020.213222

    Article  CAS  Google Scholar 

  10. Qiu Z, Li Y, Gao Y, Meng Z, Sun Y, Bai Y, Suen NT, Chen HC, Pi Y, Pang H (2023) 2D MOF-assisted pyrolysis-displacement-alloying synthesis of high-entropy alloy nanoparticles library for efficient electrocatalytic hydrogen oxidation. Angew Chem Int Ed Engl 62:202306881–202306890. https://doi.org/10.1002/anie.202306881

    Article  CAS  Google Scholar 

  11. Liu C, Bai Y, Wang J, Qiu Z, Pang H (2021) Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. J Mater Chem A 9:11201–11209. https://doi.org/10.1039/d1ta02065j

    Article  CAS  Google Scholar 

  12. Xiao X, Zhang G, Xu Y, Zhang H, Guo X, Liu Y, Pang H (2019) A new strategy for the controllable growth of MOF@PBA architectures. J Mater Chem A 7:17266–17271. https://doi.org/10.1039/c9ta05409j

    Article  CAS  Google Scholar 

  13. Cao S, Li Y, Tang Y, Sun Y, Li W, Guo X, Yang F, Zhang G, Zhou H, Liu Z, Li Q, Shakouri M, Pang H (2023) Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv Mater 35. https://doi.org/10.1002/adma.202301011

  14. Du M, Li Q, Zhao Y, Liu C, Pang H (2020) A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord Chem Rev 416:1–27. https://doi.org/10.1016/j.ccr.2020.213341

    Article  CAS  Google Scholar 

  15. Palakollu V, Chen D, Tang J, Wang L, Liu C (2022) Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Microchim Acta 189:161. https://doi.org/10.1007/s00604-022-05238-0

    Article  CAS  Google Scholar 

  16. Bhardwaj SK, Bhardwaj N, Kaur R, Mehta J, Sharma AL, Kim K-H, Deep A (2018) An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J Mater Chem A 6:14992–15009. https://doi.org/10.1039/c8ta04220a

    Article  CAS  Google Scholar 

  17. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC (2018) Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater 30:1–35. https://doi.org/10.1002/adma.201704303

    Article  CAS  Google Scholar 

  18. Zhang X, Wang B, Alsalme A, Xiang S, Zhang Z, Chen B (2020) Design and applications of water-stable metal-organic frameworks: status and challenges. Coord Chem Rev 423:213507–213529. https://doi.org/10.1016/j.ccr.2020.213507

    Article  CAS  Google Scholar 

  19. Zhang M, Shan Y, Kong Q, Pang H (2022) Applications of metal–organic framework–graphene composite materials in electrochemical energy storage. FlatChem 32:1–17. https://doi.org/10.1016/j.flatc.2021.100332

    Article  CAS  Google Scholar 

  20. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications. TrAC. Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

    Article  CAS  Google Scholar 

  21. Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H (2023) Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chin Chem Lett 34. https://doi.org/10.1016/j.cclet.2022.05.041

  22. Zheng S, Li Q, Xue H, Pang H, Xu Q (2019) A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 7:305–314. https://doi.org/10.1093/nsr/nwz137/5567449

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li B, Zhang Y, Ma D, Li L, Li G, Li G, Shi Z, Feng S (2012) A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem Commun 48:6151–6153. https://doi.org/10.1039/c2cc32384b

    Article  CAS  Google Scholar 

  24. Qian Y, Zhang F, Pang H (2021) A review of MOFs and their composites-based photocatalysts: synthesis and applications. Adv Funct Mater 31:1–34. https://doi.org/10.1002/adfm.202104231

    Article  CAS  Google Scholar 

  25. Chen D, Zhang Y, Chen B, Kang Z (2013) Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwave-assisted ball milling. Ind Eng Chem Res 52:14179–14184. https://doi.org/10.1021/ie401890j

    Article  CAS  Google Scholar 

  26. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastré J (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16:626–636. https://doi.org/10.1039/b511962f

    Article  CAS  Google Scholar 

  27. Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, Kapteijn F, Gascon J (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst Growth Des 12:3489–3498. https://doi.org/10.1021/cg300552w

    Article  CAS  Google Scholar 

  28. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969. https://doi.org/10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  29. Klapcsik K (2021) GPU accelerated numerical investigation of the spherical stability of an acoustic cavitation bubble excited by dual-frequency. Ultrason Sonochem 77:1–15. https://doi.org/10.1016/j.ultsonch.2021.105684

    Article  CAS  Google Scholar 

  30. Suslick Kenneth S, Hammerton David A, Cline Raymond E, J, (1986) Sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  31. Chattopadhyay K, Mandal M, Maiti DK (2021) Smart metal–organic frameworks for biotechnological applications: a mini-review. ACS Appl Bio Mater 4:8159–8171. https://doi.org/10.1021/acsabm.1c00982

    Article  CAS  PubMed  Google Scholar 

  32. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55. https://doi.org/10.1016/j.ultsonch.2004.01.037

    Article  CAS  PubMed  Google Scholar 

  33. An J, Farha OK, Hupp JT, Pohl E, Yeh JI, Rosi NL (2012) Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat Commun 3:604. https://doi.org/10.1038/ncomms1618

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Tanabe KK, Cohen SM (2009) Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg Chem 48:296–306

    Article  CAS  PubMed  Google Scholar 

  35. Remya VR, Kurian M (2018) Synthesis and catalytic applications of metal–organic frameworks: a review on recent literature. Int Nano Lett 9:17–29. https://doi.org/10.1007/s40089-018-0255-1

    Article  CAS  Google Scholar 

  36. Taylor-Pashow K, Rocca J-D, Xie Z, Tran S, Lin W (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park K, Ni Z, Cote AP, Choi J, Huang R, Uribe-Romo F, Chae H, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ni Z, Masel RI (2006) Rapid production of metal− organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc 128:12394–12395

    Article  CAS  PubMed  Google Scholar 

  39. Li Y, Fu Z, Xu G (2019) Metal-organic framework nanosheets: preparation and applications. Coord Chem Rev 388:79–106. https://doi.org/10.1016/j.ccr.2019.02.033

    Article  CAS  Google Scholar 

  40. Li Y, Miao J, Sun X, Xiao J, Li Y, Wang H, Xia Q, Li Z (2016) Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chem Eng J 298:191–197. https://doi.org/10.1016/j.cej.2016.03.141

    Article  CAS  Google Scholar 

  41. Zhang T, Zheng B, Li L, Song J, Song L, Zhang M (2021) Fewer-layer conductive metal-organic Langmuir-Blodgett films as electrocatalysts enable an ultralow detection limit of H2O2. Appl Surf Sci 539:1–6. https://doi.org/10.1016/j.apsusc.2020.148255

    Article  CAS  Google Scholar 

  42. Wang N, Zhao W, Shen Z, Sun S, Dai H, Ma H, Lin M (2020) Sensitive and selective detection of Pb (II) and Cu (II) using a metal-organic framework/polypyrrole nanocomposite functionalized electrode. Sensors Actuators B Chem 304:1–7. https://doi.org/10.1016/j.snb.2019.127286

    Article  CAS  Google Scholar 

  43. Rani S, Sharma B, Malhotra R, Kumar S, Varma RS, Dilbaghi N (2020) Sn-MOF@CNT nanocomposite: an efficient electrochemical sensor for detection of hydrogen peroxide. Environ Res 191:110005. https://doi.org/10.1016/j.envres.2020.110005

    Article  CAS  PubMed  Google Scholar 

  44. Feng L, Wang K-Y, Day GS, Ryder MR, Zhou H-C (2020) Destruction of metal–organic frameworks: positive and negative aspects of stability and lability. Chem Rev 120:13087–13133. https://doi.org/10.1021/acs.chemrev.0c00722

    Article  CAS  PubMed  Google Scholar 

  45. Yang J, Yang L, Ye H, Zhao F, Zeng B (2016) Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal-organic framework for the detection of nitrite. Electrochim Acta 219:647–574. https://doi.org/10.1016/j.electacta.2016.10.071

    Article  CAS  Google Scholar 

  46. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim K-H (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    Article  CAS  Google Scholar 

  47. Kajal N, Singh V, Gupta R, Gautam S (2022) Metal organic frameworks for electrochemical sensor applications: A review. Environ Res 204:1–19. https://doi.org/10.1016/j.envres.2021.112320

    Article  CAS  Google Scholar 

  48. Kung C, Li Y, Lee M, Wang S, Chiang W, Ho K (2016) In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J Mater Chem A 4:10673–10682. https://doi.org/10.1039/c6ta02563c

    Article  CAS  Google Scholar 

  49. Fang X, Chen X, Liu Y, Li Q, Zeng Z, Maiyalagan T, Mao S (2019) Nanocomposites of Zr(IV)-based metal–organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. ACS Appl Nano Mater 2:2367–2376. https://doi.org/10.1021/acsanm.9b00243

    Article  CAS  Google Scholar 

  50. Gong C, Shen Y, Chen J, Song Y, Chen S, Song Y, Wang L (2017) Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide. Sensors Actuators B Chem 239:890–897. https://doi.org/10.1016/j.snb.2016.08.108

    Article  CAS  Google Scholar 

  51. Yan Y, Ma J, Bo X, Guo L (2019) Rod-like Co based metal-organic framework embedded into mesoporous carbon composite modified glassy carbon electrode for effective detection of pyrazinamide and isonicotinyl hydrazide in biological samples. Talanta 205:1–10. https://doi.org/10.1016/j.talanta.2019.120138

    Article  CAS  Google Scholar 

  52. Lu X, Liu P, Bisetty K, Cai Y, Duan X, Wen Y, Zhu Y, Rao L, Xu Q, Xu J (2022) An emerging machine learning strategy for electrochemical sensor and supercapacitor using carbonized metal–organic framework. J Electroanal Chem 920:1–13. https://doi.org/10.1016/j.jelechem.2022.116634

    Article  CAS  Google Scholar 

  53. Yang L, Chen D, Wang X, Luo B, Wang C, Gao G, Li H, Li A, Chen L (2020) Ratiometric electrochemical sensor for accurate detection of salicylic acid in leaves of living plants. RSC Adv 10:38841–38846. https://doi.org/10.1039/d0ra05813k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen Y, Li S, Zhang L, Jing T, Wang J, Zhao L, Li F, Li C, Sun J (2022) Facile and fast synthesis of three-dimensional Ce-MOF/Ti3C2TX MXene composite for high performance electrochemical sensing of L-tryptophan. J Solid State Chem 308:1–8. https://doi.org/10.1016/j.jssc.2022.122919

    Article  CAS  Google Scholar 

  55. Bajpai V, Haldorai Y, Khan I, Sonwal S, Singh M, Yadav S, Paray BA, Jan BL, Kang SM, Huh YS, Han YK, Shukla S (2021) Au@Zr-based metal–organic framework composite as an immunosensing platform for determination of hepatitis B virus surface antigen. Microchim Acta 188:1–13. https://doi.org/10.1007/s00604-021-05022-6

    Article  CAS  Google Scholar 

  56. Wang L, Meng T, Fan Y, Chen C, Guo Z, Wang H, Zhang Y (2018) Electrochemical study of acetaminophen oxidation by gold nanoparticles supported on a leaf-like zeolitic imidazolate framework. J Colloid Interface Sci 524:1–7. https://doi.org/10.1016/j.jcis.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  57. Jiang R, Pang Y-H, Yang Q-Y, Wan C-Q, Shen X-F (2022) Copper porphyrin metal-organic framework modified carbon paper for electrochemical sensing of glyphosate. Sensors Actuators B Chem 358:1–9. https://doi.org/10.1016/j.snb.2022.131492

    Article  CAS  Google Scholar 

  58. Wang Y, Chen Y, Chuang W, Li J, Wang Y, Chuang C, Chen C, Kung C (2020) Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection. ACS Appl Nano Mater 3:9440–9448. https://doi.org/10.1021/acsanm.0c02052

    Article  CAS  Google Scholar 

  59. Deng M, Bo X, Guo L (2018) Encapsulation of platinum nanoparticles into a series of zirconium-based metal-organic frameworks: effect of the carrier structures on electrocatalytic performances of composites. J Electroanal Chem 815:198–209. https://doi.org/10.1016/j.jelechem.2018.03.021

    Article  CAS  Google Scholar 

  60. Gao L, Gao E (2021) Metal–organic frameworks for electrochemical sensors of neurotransmitters. Coord Chem Rev 434:1–22. https://doi.org/10.1016/j.ccr.2021.213784

    Article  CAS  Google Scholar 

  61. Wei C, Zhou H, Liu Q (2021) PCN-222 MOF decorated conductive PEDOT films for sensitive electrochemical determination of chloramphenicol. Mater Chem Phys 270:1–9. https://doi.org/10.1016/j.matchemphys.2021.124831

    Article  CAS  Google Scholar 

  62. Lu X, Li Y, Duan X, Zhu Y, Xue T, Rao L, Wen Y, Tian Q, Cai Y, Xu Q, Xu J (2021) A novel nanozyme comprised of electro-synthesized molecularly imprinted conducting PEDOT nanocomposite with graphene-like MoS2 for electrochemical sensing of luteolin. Microchem J 168:1–9. https://doi.org/10.1016/j.microc.2021.106418

    Article  CAS  Google Scholar 

  63. Zhang W, Zong L, Geng G, Li Y, Zhang Y (2018) Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sensors Actuators B Chem 257:1099–1109. https://doi.org/10.1016/j.snb.2017.11.059

    Article  CAS  Google Scholar 

  64. Zhang Z, Ji H, Song Y, Zhang S, Wang M, Jia C, Tian JY, He L, Zhang X, Liu CS (2017) Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens Bioelectron 94:358–364. https://doi.org/10.1016/j.bios.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  65. Hu R, Zhang X, Chi KN, Yang T, Yang YH (2020) Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl Mater Interfaces 12:30770–30778. https://doi.org/10.1021/acsami.0c06291

    Article  CAS  PubMed  Google Scholar 

  66. Numan A, Gill A, Rafique S, Guduri M, Zhan Y, Maddiboyina B, Li L, Singh S, Nguyen Dang N (2021) Rationally engineered nanosensors: a novel strategy for the detection of heavy metal ions in the environment. J Hazard Mater 409:1–13. https://doi.org/10.1016/j.jhazmat.2020.124493

    Article  CAS  Google Scholar 

  67. Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J (2020) Electrochemical deposition of metal–organic framework films and their applications. J Mater Chem A 8:7569–7587. https://doi.org/10.1039/d0ta00406e

    Article  CAS  Google Scholar 

  68. Shahrokhian S, Khaki Sanati E, Hosseini H (2018) Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Biosens Bioelectron 112:100–107. https://doi.org/10.1016/j.bios.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  69. Wen Y, Xu J (2017) Scientific importance of water-processable PEDOT-PSS and preparation, challenge and new application in sensors of its film electrode: a review. J Polym Sci, Part A: Polym Chem 55:1121–1150. https://doi.org/10.1002/pola.28482

    Article  CAS  Google Scholar 

  70. Li Y, Wan Y, Wang Y, Zhang Y (2022) 3D printing MOFs-based fiber electrodes: A novel platform as electrochemical sensors for heavy metal ions. Z Anorg Allg Chem 1-5. https://doi.org/10.1002/zaac.202200236

  71. Kokkinos C, Economou A, Pournara A, Manos M, Spanopoulos I, Kanatzidis M, Tziotzi T, Petkov V, Margariti A, Oikonomopoulos P, Papaefstathiou GS (2020) 3D-printed lab-in-a-syringe voltammetric cell based on a working electrode modified with a highly efficient Ca-MOF sorbent for the determination of Hg(II). Sensors Actuators B Chem 321:1–7. https://doi.org/10.1016/j.snb.2020.128508

    Article  CAS  Google Scholar 

  72. Ling W, Liew G, Li Y, Hao Y, Pan H, Wang H, Ning B, Xu H, Huang X (2018) Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks. Adv Mater 30:e1800917. https://doi.org/10.1002/adma.201800917

    Article  CAS  PubMed  Google Scholar 

  73. Goel P, Singh S, Kaur H, Mishra S, Deep A (2021) Low-cost inkjet printing of metal–organic frameworks patterns on different substrates and their applications in ammonia sensing. Sensors Actuators B Chem 329:1–11. https://doi.org/10.1016/j.snb.2020.129157

    Article  CAS  Google Scholar 

  74. Wu L, Lu Z, Ye J (2019) Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode. Biosens Bioelectron 135:45–49. https://doi.org/10.1016/j.bios.2019.03.064

    Article  CAS  PubMed  Google Scholar 

  75. Chernikova V, Shekhah O, Eddaoudi M (2016) Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method. ACS Appl Mater Interfaces 8:20459–20464. https://doi.org/10.1021/acsami.6b04701

    Article  CAS  PubMed  Google Scholar 

  76. Baghayeri M, Ghanei-Motlagh M, Tayebee R, Fayazi M, Narenji F (2020) Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources. Anal Chim Acta 1099:60–67. https://doi.org/10.1016/j.aca.2019.11.045

    Article  CAS  PubMed  Google Scholar 

  77. Wang X, Xu Y, Li Y, Li Y, Li Z, Zhang W, Zou X, Shi J, Huang X, Liu C, Li W (2021) Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem 357:1–8. https://doi.org/10.1016/j.foodchem.2021.129762

    Article  CAS  Google Scholar 

  78. Singh S, Numan A, Zhan Y, Singh V, Van Hung T, Nam ND (2020) A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J Hazard Mater 399:1–9. https://doi.org/10.1016/j.jhazmat.2020.123042

    Article  CAS  Google Scholar 

  79. Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen SW, Wang J (2019) Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal Chem 91:888–895. https://doi.org/10.1021/acs.analchem.8b03764

    Article  CAS  PubMed  Google Scholar 

  80. Abdollahzadeh M, Bayatsarmadi B, Vepsäläinen M, Razmjou A, Asadnia M (2022) Highly stable Li+ selective electrode with metal-organic framework as ion-to-electron transducer. Sensors Actuators B Chem 350:1–9. https://doi.org/10.1016/j.snb.2021.130799

    Article  CAS  Google Scholar 

  81. Cui X, Yang B, Zhao S, Li X, Qiao M, Mao R, Wang Y, Zhao X (2020) Electrochemical sensor based on ZIF-8@dimethylglyoxime and β-cyclodextrin modified reduced graphene oxide for nickel (II) detection. Sensors Actuators B Chem 315:1–9. https://doi.org/10.1016/j.snb.2020.128091

    Article  CAS  Google Scholar 

  82. Pang L, Wang P, Gao J, Wen Y, Liu H (2019) An active metal-organic anion framework with highly exposed SO42− on {001} facets for the enhanced electrochemical detection of trace Fe3. J Electroanal Chem 836:85–93. https://doi.org/10.1016/j.jelechem.2019.01.067

    Article  CAS  Google Scholar 

  83. Xu Z, Meng Q, Cao Q, Xiao Y, Liu H, Han G, Wei S, Yan J, Wu L (2020) Selective sensing of copper ions by mesoporous porphyrinic metal-organic framework nanoovals. Anal Chem 92:2201–2206. https://doi.org/10.1021/acs.analchem.9b04900

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Wang Y, Wang F, Chi H, Zhao G, Zhang Y, Li T, Wei Q (2022) Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J Colloid Interface Sci 606:510–517. https://doi.org/10.1016/j.jcis.2021.08.055

    Article  CAS  PubMed  Google Scholar 

  85. Zhang X, Huang X, Xu Y, Wang X, Guo Z, Huang X, Li Z, Shi J, Zou X (2020) Single-step electrochemical sensing of ppt-level lead in leaf vegetables based on peroxidase-mimicking metal-organic framework. Biosens Bioelectron 168:1–7. https://doi.org/10.1016/j.bios.2020.112544

    Article  CAS  Google Scholar 

  86. Yang QY, Wan CQ, Wang YX, Shen XF, Pang YH (2023) Bismuth-based metal-organic framework peroxidase-mimic nanozyme: preparation and mechanism for colorimetric-converted ultra-trace electrochemical sensing of chromium ion. J Hazard Mater 451:1–13. https://doi.org/10.1016/j.jhazmat.2023.131148

    Article  CAS  Google Scholar 

  87. Pang YH, Yang QY, Jiang R, Wang YY, Shen XF (2023) A stack-up electrochemical device based on metal-organic framework modified carbon paper for ultra-trace lead and cadmium ions detection. Food Chem 398:1–9. https://doi.org/10.1016/j.foodchem.2022.133822

    Article  CAS  Google Scholar 

  88. Wang F, Liu C, Yang J, Xu H, Pei W, Ma J (2022) A sulfur-containing capsule-based metal-organic electrochemical sensor for super-sensitive capture and detection of multiple heavy-metal ions. Chem Eng J 438:1–12. https://doi.org/10.1016/j.cej.2022.135639

    Article  CAS  Google Scholar 

  89. Xu Z, Liu Z, Xiao M, Jiang L, Yi C (2020) A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chem Eng J 394:1–9. https://doi.org/10.1016/j.cej.2020.124966

    Article  CAS  Google Scholar 

  90. Wang X, Qi Y, Shen Y, Yuan Y, Zhang L, Zhang C, Sun Y (2020) A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sensors Actuators B Chem 310:1–13. https://doi.org/10.1016/j.snb.2020.127756

    Article  CAS  Google Scholar 

  91. Singha DK, Mahata P (2015) Highly selective and sensitive luminescence turn-on-based sensing of Al(3+) Ions in aqueous medium using a MOF with free functional sites. Inorg Chem 54:6373–6379. https://doi.org/10.1021/acs.inorgchem.5b00688

    Article  CAS  PubMed  Google Scholar 

  92. Gan T, Zhang X, Qin G, Ni Y (2022) A calcein-modified Zr(IV)-based metal–organic framework as a visualized sensor for calcium ions. J Mater Chem C 10:1517–1525. https://doi.org/10.1039/d1tc04838d

    Article  CAS  Google Scholar 

  93. Wei D, Li M, Wang Y, Zhu N, Hu X, Zhao B, Zhang Z, Yin D (2023) Encapsulating gold nanoclusters into metal-organic frameworks to boost luminescence for sensitive detection of copper ions and organophosphorus pesticides. J Hazard Mater 441:1–9. https://doi.org/10.1016/j.jhazmat.2022.129890

    Article  CAS  Google Scholar 

  94. Dong H, Zhao L, Chen Y, Li M, Chen W, Wang Y, Wei X, Zhang Y, Zhou Y, Xu M (2022) Dual-ligand near-infrared luminescent lanthanide-based metal-organic framework coupled with in vivo microdialysis for highly sensitive ratiometric detection of Zn2+ in a mouse model of Alzheimer’s disease. Anal Chem 94:11940–11948. https://doi.org/10.1021/acs.analchem.2c02898

    Article  CAS  PubMed  Google Scholar 

  95. Wang J, Fan Y, Lee H, Yi C, Cheng C, Zhao X, Yang M (2018) Ultrasmall metal–organic framework Zn-MOF-74 nanodots: size-controlled synthesis and application for highly selective colorimetric sensing of Iron(III) in aqueous solution. ACS Appl Nano Mater 1:3747–3753. https://doi.org/10.1021/acsanm.8b01083

    Article  CAS  Google Scholar 

  96. Xia YF, Bao GM, Peng XX, Wu XY, Lu HF, Zhong YF, Li W, He JX, Liu SY, Fan Q, Li SH, Xiao W, Yuan HQ (2022) A highly water-stable dual-emission fluorescent probe based on Eu3+-loaded MOF for the simultaneous detection and quantification of Fe3+ and Al3+ in swine wastewater. Anal Chim Acta 1221:1–9. https://doi.org/10.1016/j.aca.2022.340115

    Article  CAS  Google Scholar 

  97. Lin C, Jiang L, Cheng H, Qin Y, Wu P, Tang Y, Liu Y, Yang X, Wang J (2023) Dual-emission metal–organic framework for highly selective ratiometric sensing of lithium(I) ions in aqueous solution. ACS Sustain Chem Eng 11:5262–5269. https://doi.org/10.1021/acssuschemeng.3c00022

    Article  CAS  Google Scholar 

  98. Ben Z, Ma G, Xu F (2023) UIO-66/Ag/TiO2 nanocomposites as highly active SERS substrates for quantitative detection of hexavalent chromium. Chemosensors 11. https://doi.org/10.3390/chemosensors11060315

  99. Xu X, Luo Z, Ye K, Zou X, Niu X, Pan J (2021) One-pot construction of acid phosphatase and hemin loaded multifunctional metal-organic framework nanosheets for ratiometric fluorescent arsenate sensing. J Hazard Mater 412:1–8. https://doi.org/10.1016/j.jhazmat.2020.124407

    Article  CAS  Google Scholar 

  100. Roushani M, Valipour A, Saedi Z (2016) Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sensors Actuators B Chem 233:419–425. https://doi.org/10.1016/j.snb.2016.04.106

    Article  CAS  Google Scholar 

  101. Hou J, Jia P, Yang K, Bu T, Zhao S, Li L, Wang L (2022) Fluorescence and colorimetric dual-Mode ratiometric sensor based on Zr-tetraphenylporphyrin tetrasulfonic acid hydrate metal-organic frameworks for visual detection of copper ions. ACS Appl Mater Interfaces 14:13848–13857. https://doi.org/10.1021/acsami.1c23199

    Article  CAS  PubMed  Google Scholar 

  102. Zou J, Zhong W, Gao F, Tu X, Chen S, Huang X, Wang X, Lu L, Yu Y (2020) Sensitive electrochemical platform for trace determination of Pb2+ based on multilayer Bi-MOFs/reduced graphene oxide films modified electrode. Microchim Acta 187:1–8. https://doi.org/10.1007/s00604-020-04571-6

    Article  CAS  Google Scholar 

  103. Gao X, Gao Y, Qi R, Han L (2019) One-pot synthesis of a recyclable ratiometric fluorescent probe based on MOFs for turn-on sensing of Mg2+ ions and bioimaging in live cells. New J Chem 43:18377–18383. https://doi.org/10.1039/c9nj04536h

    Article  CAS  Google Scholar 

  104. Yang Y, Jiang F, Chen L, Pang J, Wu M, Wan X, Pan J, Qian J, Hong M (2015) An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba2+ ions and with remarkable selectivities for CO2/N2 and CO2/CH4. J Mater Chem A 3:13526–13532. https://doi.org/10.1039/c5ta00720h

    Article  CAS  Google Scholar 

  105. Han Z, Xiao Z, Hao M, Yuan D, Liu L, Wei N, Yao H, Zhou M (2015) Functional hydrogen-bonded supramolecular framework for K+ ion sensing. Cryst Growth Des 15:531–533. https://doi.org/10.1021/cg501259g

    Article  CAS  Google Scholar 

  106. El-Sewify IM, Shenashen MA, Shahat A, Yamaguchi H, Selim MM, Khalil MMH, El-Safty SA (2018) Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. J Lumin 198:438–448. https://doi.org/10.1016/j.jlumin.2018.02.028

    Article  CAS  Google Scholar 

  107. Wang X, Wang Y, Wang X, Lu K, Jiang W, Cui PP, Hao H, Dai F (2020) Two series of Ln-MOFs by solvent induced self-assembly demonstrating the rapid selective sensing of Mg2+ and Fe3+ cations. Dalton Trans 49:15473–15480. https://doi.org/10.1039/d0dt03264f

    Article  CAS  PubMed  Google Scholar 

  108. Min Y, Han X, Qi Y, Jiang L, Song Y, Ma Y, Zhang J, Li H (2023) A novel near-infrared fluorescent and colorimetric probe for selective detection of Ag+ and Hg2+. Color Technol 1-12. https://doi.org/10.1111/cote.12687

  109. Pavadai R, Amalraj A, Subramanian S, Perumal P (2021) High aatalytic activity of fluorophore-labeled Y-shaped DNAzyme/3D MOF-MoS(2)NBs as a versatile biosensing platform for the simultaneous detection of Hg2+, Ni2+, and Ag+ Ions. ACS Appl Mater Interfaces 13:31710–31724. https://doi.org/10.1021/acsami.1c07086

    Article  CAS  PubMed  Google Scholar 

  110. Yi F, Zhang R, Wang H, Chen L, Han L, Jiang H, Xu Q (2017) Metal-organic frameworks and their composites: synthesis and electrochemical applications. Small Methods 1:1–24. https://doi.org/10.1002/smtd.201700187

    Article  CAS  Google Scholar 

  111. Nangare S, Patil S, Patil A, Khan Z, Deshmukh P, Tade R, Mahajan M, Bari S, Patil P (2021) Structural design of nanosize-metal–organic framework-based sensors for detection of organophosphorus pesticides in food and water samples: current challenges and future prospects. J Nanostructure Chem 12:729–764. https://doi.org/10.1007/s40097-021-00449-y

    Article  CAS  Google Scholar 

  112. Ma T, Li H, Ma JG, Cheng P (2020) Application of MOF-based materials in electrochemical sensing. Dalton Trans 49:17121–17129. https://doi.org/10.1039/d0dt03388j

    Article  CAS  PubMed  Google Scholar 

  113. Sala A, Brisset H, Margaillan A, Mullot J, Branger C (2022) Electrochemical sensors modified with ion-imprinted polymers for metal ion detection. TrAC. Trends Anal Chem 148:1–17. https://doi.org/10.1016/j.trac.2022.116536

    Article  CAS  Google Scholar 

  114. Evtugyn G, Belyakova S, Porfireva A, Hianik T (2020) Electrochemical aptasensors based on hybrid metal-organic frameworks. Sensors 20:1–33. https://doi.org/10.3390/s20236963

    Article  CAS  Google Scholar 

  115. Noviana E, McCord C, Clark K, Jang I, Henry C (2020) Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip 20:9–34. https://doi.org/10.1039/c9lc00903e

    Article  CAS  PubMed  Google Scholar 

  116. Kim J, Kumar R, Bandodkar AJ, Wang J (2016) Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 3:1–15. https://doi.org/10.1002/aelm.201600260

    Article  CAS  Google Scholar 

  117. Sivakumar R, Lee N (2021) Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere 275:1–16. https://doi.org/10.1016/j.chemosphere.2021.130096

    Article  CAS  Google Scholar 

  118. Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Mater 3:159–177. https://doi.org/10.1016/j.jmat.2017.08.002

    Article  Google Scholar 

  119. Lu W, Xiao R, Yang J, Li H, Zhang W (2017) Data mining-aided materials discovery and optimization. J Mater 3:191–201. https://doi.org/10.1016/j.jmat.2017.08.003

    Article  Google Scholar 

  120. Su Y, Fu H, Bai Y, Jiang X, Xie J (2020) Progress in Materials Genome Engineering in China. Acta Metall Sin 56:1313–1323. https://doi.org/10.11900/0412.1961.2020.00199

    Article  CAS  Google Scholar 

  121. Lu X (2015) Remarks on the recent progress of Materials Genome Initiative. Sci Bull 60:1966–1968. https://doi.org/10.1007/s11434-015-0937-2

    Article  Google Scholar 

  122. Jung J, Yoon JI, Park HK, Kim JY, Kim HS (2019) An efficient machine learning approach to establish structure-property linkages. Comput Mater Sci 156:17–25. https://doi.org/10.1016/j.commatsci.2018.09.034

    Article  Google Scholar 

  123. Liu P, Wen Y, Huang L, Zhu X, Wu R, Ai S, Xue T, Ge Y (2021) An emerging machine learning strategy for the assisted-design of high-performance supercapacitor materials by mining the relationship between capacitance and structural features of porous carbon. J Electroanal Chem 899:1–8. https://doi.org/10.1016/j.jelechem.2021.115684

    Article  CAS  Google Scholar 

  124. Zhang X, Cui J, Zhang K, Wu J, Lee Y (2019) Machine learning prediction on properties of nanoporous materials utilizing pore geometry barcodes. J Chem Inf Model 59:4636–4644. https://doi.org/10.1021/acs.jcim.9b00623

    Article  CAS  PubMed  Google Scholar 

  125. Borboudakis G, Stergiannakos T, Frysali M, Klontzas E, Tsamardinos I, Froudakis GE (2017) Chemically intuited, large-scale screening of MOFs by machine learning techniques. Npj Comput Mater 3:1–7. https://doi.org/10.1038/s41524-017-0045-8

    Article  CAS  Google Scholar 

  126. Jablonka KM, Ongari D, Moosavi SM, Smit B (2020) Big-data science in porous materials: materials genomics and machine learning. Chem Rev 120:8066–8129. https://doi.org/10.1021/acs.chemrev.0c00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Diamantis SA, Pournara AD, Koutsouroubi ED, Moularas C, Deligiannakis Y, Armatas GS, Hatzidimitriou AG, Manos MJ, Lazarides T (2022) Detection and sorption of heavy metal ions in aqueous media by a fluorescent Zr(IV) metal–organic framework functionalized with 2-picolylamine receptor groups. Inorg Chem 61:7847–7858. https://doi.org/10.1021/acs.inorgchem.2c00434

    Article  CAS  PubMed  Google Scholar 

  128. Wang M, Guo L, Cao D (2018) Metal-organic framework as luminescence turn-on sensor for selective detection of metal ions: absorbance caused enhancement mechanism. Sensors Actuators B Chem 256:839–845. https://doi.org/10.1016/j.snb.2017.10.016

    Article  CAS  Google Scholar 

  129. Elashery SEA, Attia NF, Oh H (2022) Design and fabrication of novel flexible sensor based on 2D Ni-MOF nanosheets as a preliminary step toward wearable sensor for onsite Ni(II) ions detection in biological and environmental samples. Anal Chim Acta 1197:1–14. https://doi.org/10.1016/j.aca.2022.339518

    Article  CAS  Google Scholar 

  130. Ge Y, Camarada MB, Liu P, Qu M, Wen Y, Xu L, Liang H, Liu E, Zhang X, Hao W, Wang L (2022) A portable smart detection and electrocatalytic mechanism of mycophenolic acid: a machine learning-based electrochemical nanosensor to adapt variable-pH silage microenvironment. Sensors Actuators B Chem 372:1–9. https://doi.org/10.1016/j.snb.2022.132627

    Article  CAS  Google Scholar 

  131. Zhao F, He J, Li X, Bai Y, Ying Y, Ping J (2020) Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens Bioelectron 170:1–8. https://doi.org/10.1016/j.bios.2020.112636

    Article  CAS  Google Scholar 

  132. Li H, Wang C, Wang X, Hou P, Luo B, Song P, Pan D, Li A, Chen L (2019) Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings. Biosens Bioelectron 126:193–199. https://doi.org/10.1016/j.bios.2018.10.041

    Article  CAS  PubMed  Google Scholar 

  133. Lu Y, Xu K, Zhang L, Deguchi M, Shishido H, Arie T, Pan R, Hayashi A, Shen L, Akita S, Takei K (2020) Multimodal plant healthcare flexible sensor system. ACS Nano 14:10966–10975. https://doi.org/10.1021/acsnano.0c03757

    Article  CAS  PubMed  Google Scholar 

  134. Lee G, Hossain O, Jamalzadegan S, Liu Y, Wang H, Saville AC, Shymanovich T, Paul R, Rotenberg D, Whitfield AE, Ristaino JB, Zhu Y, Wei Q (2023) Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Sci Adv 9:1–14. https://doi.org/10.1126/sciadv.ade2232

    Article  CAS  Google Scholar 

  135. Haraguchi H (2017) Metallomics: the history over the last decade and a future outlook. Metallomics 9:1001–1013. https://doi.org/10.1039/c7mt00023e

    Article  PubMed  Google Scholar 

  136. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138. https://doi.org/10.1039/b713633c

    Article  CAS  PubMed  Google Scholar 

  137. Li X, Liu T, Chang C, Lei Y, Mao X (2021) Analytical methodologies for agrometallomics: a critical review. J Agric Food Chem 69:6100–6118. https://doi.org/10.1021/acs.jafc.1c00275

    Article  CAS  PubMed  Google Scholar 

  138. Hatfield KO, Gole MT, Schorr NB, Murphy CJ, Rodriguez-Lopez J (2021) Surface-enhanced raman spectroscopy-scanning electrochemical microscopy: observation of real-time surface pH perturbations. Anal Chem 93:7792–7796. https://doi.org/10.1021/acs.analchem.1c00888

    Article  CAS  PubMed  Google Scholar 

  139. Rao L, Zhu Y, Duan Z, Xue T, Duan X, Wen Y, Kumar AS, Zhang W, Xu J, Hojjati-Najafabadi A (2022) Lotus seedpods biochar decorated molybdenum disulfide for portable, flexible, outdoor and inexpensive sensing of hyperin. Chemosphere 301:1–10. https://doi.org/10.1016/j.chemosphere.2022.134595

    Article  CAS  Google Scholar 

  140. Li Y, Chen Y, Yu H, Tian L, Wang Z (2018) Portable and smart devices for monitoring heavy metal ions integrated with nanomaterials. TrAC. Trends Anal Chem 98:190–200. https://doi.org/10.1016/j.trac.2017.11.011

    Article  CAS  Google Scholar 

  141. Huang P, Xiong Y, Ge Y, Wen Y, Zeng X, Zhang J, Wang P, Wang Z, Chen S (2023) Artificial intelligence-enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin. Microchim Acta 190:94. https://doi.org/10.1007/s00604-023-05672-8

    Article  CAS  Google Scholar 

  142. Zhang Z, Wen F, Sun Z, Guo X, He T, Lee C (2022) Artificial intelligence-enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin. Adv Intell Syst 4:1–23. https://doi.org/10.1002/aisy.202100228

    Article  CAS  Google Scholar 

  143. Chen B, Hu L, He B, Luan T, Jiang G (2020) Environmetallomics: Systematically investigating metals in environmentally relevant media. TrAC. Trends Anal Chem 126:1–8. https://doi.org/10.1016/j.trac.2020.115875

    Article  CAS  Google Scholar 

  144. Li X, Zhan C, Huang Q, He M, Yang C, Yang C, Huang X, Chen M, Xie X, Chen H (2022) Smart diaper based on integrated multiplex carbon nanotube-coated electrode array sensors for in situ urine monitoring. ACS Appl Nano Mater 5:4767–4778. https://doi.org/10.1021/acsanm.1c04220

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (51962007), Training Project of High-level and High-skilled Leading Talents of Jiangxi Province, Jiangxi Province Technology Innovation Guidance Project (20203AEI003), Natural Science Foundation of Jiangxi Province (2023ACB2013019, 20212ACB204006).

Author information

Authors and Affiliations

Authors

Contributions

Xinyu Lu: writing - original draft, investigation. Kumarasamy Jayakumar: writing – review & editing, investigation. Yangping Wen: project administration, supervision, writing - review & editing. Akbar Hojjati-Najafabadi: investigation. Xuemin Duan: validation. Jingkun Xu: conceptualization.

Corresponding author

Correspondence to Yangping Wen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Jayakumar, K., Wen, Y. et al. Recent advances in metal-organic framework (MOF)-based agricultural sensors for metal ions: a review. Microchim Acta 191, 58 (2024). https://doi.org/10.1007/s00604-023-06121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06121-2

Keywords

Navigation