Skip to main content

Advertisement

Log in

Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

Amp:

Amperometry

ASV:

Anodic stripping voltammetry

AuE:

Gold electrode

AuNF:

Gold nanoflower

AuNP:

Gold nanoparticle

AuNR:

Au nanorod

BCL:

Burkholderia cepacia lipase

BDC2− :

1,4-Benzenedicarboxylate

BET:

Brunauer–Emmett–Teller

BIB:

1,4-Bisimidazolebenzene

bipy:

Bipyridine

BSA:

Bovine serum albumin

BTB:

4,4′,4″-Benzene-1,3,5-triyl-tribenzoic acid

BTC:

1,3,5-Benzene-tricarboxylate

BTCA-P-Cu-CP:

(Benzene-1,2,4,5 tetracarboxylic acid)-piperazine-Cu-coordination polymer

Ce:

Cerium

Chronoamp:

Chronoamperometry

CNF:

Carbon nanofiber

CNH:

Carbon nanohorn

CNT:

Carbon nanotube

COF:

Covalent organic framework

CPE:

Carbon paste electrode

CuNP:

Copper nanoparticle

DNA:

Deoxyribonucleic acid

DPASV:

Differential pulse anodic stripping voltammetry

DPSV:

Differential pulse stripping voltammetry

DPV:

Differential pulse voltammetry

DQ:

N,N′-Ethylene 2,2′-bipyridinium

EDTA:

Ethylenediaminetetraacetic acid

EG:

Expanded graphite

ERGO:

Electrochemically reduced graphene oxide

Exo III:

Exonuclease III

FTO:

Fluorine-doped tin oxide

GaOOH:

Gallium oxide hydroxide

GCE:

Glassy carbon electrode

GN:

Graphene nanocomposite

GNR:

Graphene nanoribbon

GO:

Graphene oxide

GONR:

Graphene oxide nanoribbon

Gr:

Graphene

H2adp:

Adipic acid

H2O2 :

Hydrogen peroxide

H2TZB:

4-(1H-Tetrazol-5-yl)benzoic acid

H4DSBDC:

2,5-Disulfhydrylbenzene-1,4-dicarboxylic acid

H6dpa:

3,4-Di(3,5-dicarboxyphenyl)phthalic acid

HHTP:

2,3,6,7,10,11-Hexahydroxytriphenylene

HITP:

2,3,6,7,10,11-Hexaiminotriphenylene

HMIM:

2-Methylimidazole

IL:

Ionic liquid

ITO:

Indium tin oxide

JPBC:

Jasmine petal derived biocarbon

LSV:

Linear sweep voltammetry

MIP:

Molecularly imprinted polymer

MoS2 :

Molybdenum disulfide

MPC:

Macroporous carbon

MQ:

N,N′-Dimethyl-2,2′-bipyridinium

MWCNT:

Multi-walled carbon nanotube

NiCoNS:

Nickel cobalt nanosheet

NPC:

Nanoporous carbon

NP:

Nanoparticle

P(ANI-co-ANA):

Polyaniline and poly(anthranilic acid) copolymer

PA:

Phytic acid

PAA:

Poly(acrylic acid)

PCE:

Porous carbon electrode

PDMS:

Polydimethylsiloxane

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PO:

Polyoxometalate

PPy:

Polypyrrole

RGO:

Reduced graphene oxide

SA:

Streptavidin

SPCE:

Screen-printed carbon electrode

SPE:

Screen-printed electrode

SPE:

Screen-printed electrode

SWASV:

Square wave anodic stripping voltammetry

SWV:

Square wave voltammetry

TCPP:

Tetra-(4-carboxyphenyl)-substituted porphyrin

TDPAT:

2,4,6-Tris(3,5-dicarboxylphenylamino)-1,3,5-triazine

TPA:

Terephthalic acid

TPN:

Terephthalonitrile

TPT:

2,4,6-Tri(4-pyridyl)-1,3,5-triazine

tyr:

l-Tyrosine

ZIF:

Zeolitic imidazolate framework

β-CD:

β-Cyclodextrin

References

  1. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674. https://doi.org/10.1021/cr300014x

    Article  CAS  PubMed  Google Scholar 

  2. Liang S, Wu X-L, Xiong J et al (2020) Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord Chem Rev 406:213149. https://doi.org/10.1016/j.ccr.2019.213149

    Article  CAS  Google Scholar 

  3. Li H, Wang K, Sun Y et al (2018) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21:108–121. https://doi.org/10.1016/j.mattod.2017.07.006

    Article  CAS  Google Scholar 

  4. Wen X, Zhang Q, Guan J (2020) Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev 409:213214. https://doi.org/10.1016/j.ccr.2020.213214

    Article  CAS  Google Scholar 

  5. Ramasubbu V, Kumar PR, Mothi EM et al (2019) Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells. Appl Surf Sci 496:143646. https://doi.org/10.1016/j.apsusc.2019.143646

    Article  CAS  Google Scholar 

  6. Suresh K, Matzger AJ (2019) Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF). Angew Chem Int Ed 58:16790–16794. https://doi.org/10.1002/anie.201907652

    Article  CAS  Google Scholar 

  7. Mukherjee S, Ganguly S, Samanta D, Das D (2020) Sustainable green route to synthesize functional nano-MOFs as selective sensing probes for CrVI oxoanions and as specific sequestering agents for Cr2O72. ACS Sustain Chem Eng 8:1195–1206. https://doi.org/10.1021/acssuschemeng.9b06393

  8. McKinlay AC, Morris RE, Horcajada P et al (2010) BioMOFs: metal–organic frameworks for biological and medical applications. Angew Chem Int Ed 49:6260–6266. https://doi.org/10.1002/anie.201000048

    Article  CAS  Google Scholar 

  9. Wriedt M, Zhou H-CJ (2012) Systematic investigations on magneto-structural correlations of copper(ii) coordination polymers based on organic ligands with mixed carboxylic and nitrogen-based moieties. Dalton Trans 41:4207–4216. https://doi.org/10.1039/C2DT11965J

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Wang Q, Wang Q et al (2014) Highly dispersible and stable copper terephthalate metal–organic framework–graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces 6:11573–11580. https://doi.org/10.1021/am5019918

    Article  CAS  PubMed  Google Scholar 

  11. Palakollu VN, Chiwunze TE, Liu C, Karpoormath R (2020) Electrochemical sensitive determination of acetaminophen in pharmaceutical formulations at iron oxide/graphene composite modified electrode. Arab J Chem 13:4350–4357. https://doi.org/10.1016/j.arabjc.2019.08.001

    Article  CAS  Google Scholar 

  12. Palakollu VN, Karpoormath R (2018) Enhanced electrochemical sensing of dopamine based on carboxylic acid functionalized multi-walled carbon nanotubes/poly(toluidine blue) composite. Synth Met 245:87–95. https://doi.org/10.1016/j.synthmet.2018.08.012

    Article  CAS  Google Scholar 

  13. Palakollu VN, Karpoormath R, Wang L et al (2020) A versatile and ultrasensitive electrochemical sensing platform for detection of chlorpromazine based on nitrogen-doped carbon dots/cuprous oxide composite. Nanomater. 10:1513

    Article  CAS  Google Scholar 

  14. Shaikshavali P, Madhusudana Reddy T, Venu Gopal T et al (2020) A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of epinephrine in human serum and pharmaceutical formulation. Colloids Surf A Physicochem Eng Asp 584:124038. https://doi.org/10.1016/j.colsurfa.2019.124038

    Article  CAS  Google Scholar 

  15. Narayana PV, Madhusudana Reddy T, Gopal P et al (2015) Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: a voltammetric study. Mater Sci Eng C 56:57–65. https://doi.org/10.1016/j.msec.2015.06.011

    Article  CAS  Google Scholar 

  16. Laghrib F, Bakasse M, Lahrich S, El Mhammedi MA (2020) Electrochemical sensors for improved detection of paraquat in food samples: a review. Mater Sci Eng C 107:110349. https://doi.org/10.1016/j.msec.2019.110349

    Article  CAS  Google Scholar 

  17. Maciel JV, Durigon AMM, Souza MM et al (2019) Polysaccharides derived from natural sources applied to the development of chemically modified electrodes for environmental applications: a review. Trends Environ Anal Chem 22:e00062. https://doi.org/10.1016/j.teac.2019.e00062

    Article  CAS  Google Scholar 

  18. Ren H, Wang J, Feng H et al (2019) A versatile ratiometric electrochemical sensing platform based on N-Mo2C for detection of m-nitrophenol. Biosens Bioelectron 144:111663. https://doi.org/10.1016/j.bios.2019.111663

  19. Jothi L, Neogi S, Kumar JS, Nageswaran G (2018) Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons. Biosens Bioelectron 105:236–242. https://doi.org/10.1016/j.bios.2018.01.040

  20. Fatma S, Prasad BB, Jaiswal S et al (2019) Electrochemical simultaneous analysis of dopamine and epinephrine using double imprinted One MoNomer acryloylated graphene oxide-carbon black composite polymer. Biosens Bioelectron 135:36–44. https://doi.org/10.1016/j.bios.2019.04.016

    Article  CAS  PubMed  Google Scholar 

  21. Yáñez-Sedeño P, Pingarrón JM, Riu J, Rius FX (2010) Electrochemical sensing based on carbon nanotubes. TrAC Trends Anal Chem 29:939–953. https://doi.org/10.1016/j.trac.2010.06.006

    Article  CAS  Google Scholar 

  22. Wang K, Wu C, Wang F et al (2020) Bimetallic nanoparticles decorated hollow nanoporous carbon framework as nanozyme biosensor for highly sensitive electrochemical sensing of uric acid. Biosens Bioelectron 150:111869. https://doi.org/10.1016/j.bios.2019.111869

    Article  CAS  PubMed  Google Scholar 

  23. Sajid M, Baig N, Alhooshani K (2019) Chemically modified electrodes for electrochemical detection of dopamine: challenges and opportunities. TrAC Trends Anal Chem 118:368–385. https://doi.org/10.1016/j.trac.2019.05.042

    Article  CAS  Google Scholar 

  24. Wang Z, Cohen SM (2007) Postsynthetic covalent modification of a neutral metal−organic framework. J Am Chem Soc 129:12368–12369. https://doi.org/10.1021/ja074366o

    Article  CAS  PubMed  Google Scholar 

  25. Hu Y, Huang Z, Liao J, Li G (2013) Chemical bonding approach for fabrication of hybrid magnetic metal–organic framework-5: high efficient adsorbents for magnetic enrichment of trace analytes. Anal Chem 85:6885–6893. https://doi.org/10.1021/ac4011364

    Article  CAS  PubMed  Google Scholar 

  26. Liu K, You H, Jia G et al (2010) Hierarchically nanostructured coordination polymer: facile and rapid fabrication and tunable morphologies. Cryst Growth Des 10:790–797. https://doi.org/10.1021/cg901170j

    Article  CAS  Google Scholar 

  27. Wang C, Zhou M, Ma Y et al (2018) Hybridized polyoxometalate-based metal–organic framework with Ketjenblack for the nonenzymatic detection of H2O2. Chem – An Asian J 13:2054–2059. https://doi.org/10.1002/asia.201800758

  28. Wang X, Lu X, Wu L, Chen J (2015) 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens Bioelectron 65:295–301. https://doi.org/10.1016/j.bios.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  29. Anik Ü, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186:196. https://doi.org/10.1007/s00604-019-3321-0

    Article  CAS  Google Scholar 

  30. Zhang Z, Lou Y, Guo C et al (2021) Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 118:569–588. https://doi.org/10.1016/j.tifs.2021.10.024

    Article  CAS  Google Scholar 

  31. Osman DI, El-Sheikh SM, Sheta SM et al (2019) Nucleic acids biosensors based on metal-organic framework (MOF): paving the way to clinical laboratory diagnosis. Biosens Bioelectron 141:111451. https://doi.org/10.1016/j.bios.2019.111451

    Article  CAS  PubMed  Google Scholar 

  32. Xue Y, Zheng S, Xue H, Pang H (2019) Metal–organic framework composites and their electrochemical applications. J Mater Chem A 7:7301–7327. https://doi.org/10.1039/C8TA12178H

    Article  CAS  Google Scholar 

  33. Li G, Zhao S, Zhang Y, Tang Z (2018) Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv Mater 30:1800702. https://doi.org/10.1002/adma.201800702

    Article  CAS  Google Scholar 

  34. Bhardwaj SK, Bhardwaj N, Kaur R et al (2018) An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J Mater Chem A 6:14992–15009. https://doi.org/10.1039/C8TA04220A

    Article  CAS  Google Scholar 

  35. Kandiah M, Nilsen MH, Usseglio S et al (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22:6632–6640. https://doi.org/10.1021/cm102601v

    Article  CAS  Google Scholar 

  36. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279. https://doi.org/10.1038/46248

    Article  CAS  Google Scholar 

  37. Howarth AJ, Peters AW, Vermeulen NA et al (2017) Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem Mater 29:26–39. https://doi.org/10.1021/acs.chemmater.6b02626

    Article  CAS  Google Scholar 

  38. Dong Y, Gao T, Zhou Y et al (2015) Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode. Spectrochim Acta Part A Mol Biomol Spectrosc 134:225–232. https://doi.org/10.1016/j.saa.2014.06.117

    Article  CAS  Google Scholar 

  39. Cohen SM (2012) Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev 112:970–1000. https://doi.org/10.1021/cr200179u

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen JG, Cohen SM (2010) Moisture-resistant and superhydrophobic metal−organic frameworks obtained via postsynthetic modification. J Am Chem Soc 132:4560–4561. https://doi.org/10.1021/ja100900c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-rela. J Am Chem Soc 112:1546–1554. https://doi.org/10.1021/ja00160a038

    Article  CAS  Google Scholar 

  42. Yin Z, Wan S, Yang J et al (2019) Recent advances in post-synthetic modification of metal–organic frameworks: new types and tandem reactions. Coord Chem Rev 378:500–512. https://doi.org/10.1016/j.ccr.2017.11.015

    Article  CAS  Google Scholar 

  43. Cohen SM (2017) The postsynthetic renaissance in porous solids. J Am Chem Soc 139:2855–2863. https://doi.org/10.1021/jacs.6b11259

    Article  CAS  PubMed  Google Scholar 

  44. Fang J-J, Yang N-N, Gao E-Q (2018) Making metal–organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine. Electrochem Commun 89:32–37. https://doi.org/10.1016/j.elecom.2018.02.014

    Article  CAS  Google Scholar 

  45. Wan J, Shen Y, Xu L et al (2021) Ferrocene-functionalized Ni(II)-based metal-organic framework as electrochemical sensing interface for ratiometric analysis of Cu2+, Pb2+ and Cd2+. J Electroanal Chem 895:115374. https://doi.org/10.1016/j.jelechem.2021.115374

  46. Yu J, Mu C, Yan B et al (2017) Nanoparticle/MOF composites: preparations and applications. Mater Horizons 4:557–569. https://doi.org/10.1039/C6MH00586A

    Article  CAS  Google Scholar 

  47. Xu Y, Li Q, Xue H, Pang H (2018) Metal-organic frameworks for direct electrochemical applications. Coord Chem Rev 376:292–318. https://doi.org/10.1016/j.ccr.2018.08.010

    Article  CAS  Google Scholar 

  48. Liu X-W, Sun T-J, Hu J-L, Wang S-D (2016) Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. J Mater Chem A 4:3584–3616. https://doi.org/10.1039/C5TA09924B

    Article  CAS  Google Scholar 

  49. Kempahanumakkagari S, Vellingiri K, Deep A et al (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    Article  CAS  Google Scholar 

  50. Mahmoudi E, Fakhri H, Hajian A et al (2019) High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms. Bioelectrochemistry 130:107348. https://doi.org/10.1016/j.bioelechem.2019.107348

    Article  CAS  PubMed  Google Scholar 

  51. Xu C, Liu L, Wu C, Wu K (2020) Unique 3D heterostructures assembled by quasi-2D Ni-MOF and CNTs for ultrasensitive electrochemical sensing of bisphenol A. Sensors Actuators B Chem 310:127885. https://doi.org/10.1016/j.snb.2020.127885

    Article  CAS  Google Scholar 

  52. Wang X, Xu Y, Li Y et al (2021) Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem 357:129762. https://doi.org/10.1016/j.foodchem.2021.129762

    Article  CAS  PubMed  Google Scholar 

  53. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  54. Fu J, Wang X, Wang T et al (2019) Covalent functionalization of graphene oxide with a presynthesized metal–organic framework enables a highly stable electrochemical sensing. ACS Appl Mater Interfaces 11:33238–33244. https://doi.org/10.1021/acsami.9b10531

    Article  CAS  PubMed  Google Scholar 

  55. Rezvani J N, Madrakian T, Afkhami A, Ghoorchian A (2020) In situ growth of metal–organic framework HKUST-1 on graphene oxide nanoribbons with high electrochemical sensing performance in imatinib determination. ACS Appl Mater Interfaces 12:4859–4869. https://doi.org/10.1021/acsami.9b18097

  56. Wang S-S, Yang G-Y (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962. https://doi.org/10.1021/cr500390v

    Article  CAS  PubMed  Google Scholar 

  57. Chen H, Yang T, Liu F, Li W (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sensors Actuators B Chem 286:401–407. https://doi.org/10.1016/j.snb.2018.10.036

    Article  CAS  Google Scholar 

  58. Shi L, Zhu X, Liu T et al (2016) Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sensors Actuators B Chem 227:583–590. https://doi.org/10.1016/j.snb.2015.12.092

    Article  CAS  Google Scholar 

  59. Lu J, Hu Y, Wang P et al (2020) Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sensors Actuators B Chem 311:127909. https://doi.org/10.1016/j.snb.2020.127909

  60. Li Y, Wang C, Li Z et al (2020) Zirconium-porphyrin complex as novel nanocarrier for label-free impedimetric biosensing neuron-specific enolase. Sensors Actuators B Chem 314:128090. https://doi.org/10.1016/j.snb.2020.128090

    Article  CAS  Google Scholar 

  61. Ling P, Lei J, Ju H (2015) Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosens Bioelectron 71:373–379. https://doi.org/10.1016/j.bios.2015.04.046

    Article  CAS  PubMed  Google Scholar 

  62. Hod I, Sampson MD, Deria P et al (2015) Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal 5:6302–6309. https://doi.org/10.1021/acscatal.5b01767

  63. Liberman I, Shimoni R, Ifraemov R et al (2020) Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics. J Am Chem Soc 142:1933–1940. https://doi.org/10.1021/jacs.9b11355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park KC, Seo C, Gupta G et al (2017) Efficient energy transfer (EnT) in pyrene- and porphyrin-based mixed-ligand metal–organic frameworks. ACS Appl Mater Interfaces 9:38670–38677. https://doi.org/10.1021/acsami.7b14135

    Article  CAS  PubMed  Google Scholar 

  65. de Almeida Ferraz NV, Silva Vasconcelos W, Santos Silva C et al (2020) Gold-copper metal-organic framework nanocomposite as a glassy carbon electrode modifier for the voltammetric detection of glutathione in commercial dietary supplements. Sensors Actuators B Chem 307:127636. https://doi.org/10.1016/j.snb.2019.127636

    Article  CAS  Google Scholar 

  66. Al-Janabi N, Alfutimie A, Siperstein FR, Fan X (2016) Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Front Chem Sci Eng 10:103–107. https://doi.org/10.1007/s11705-015-1552-0

  67. Kim D, Kim DW, Hong WG, Coskun A (2016) Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. J Mater Chem 4(20):7710–7717. https://doi.org/10.1039/C6TA01899H

    Article  CAS  Google Scholar 

  68. Choudhary M, Shukla SK, Taher A et al (2014) Organic–inorganic hybrid supramolecular assembly: an efficient platform for nonenzymatic glucose sensor. ACS Sustain Chem Eng 2:2852–2858. https://doi.org/10.1021/sc500613q

    Article  CAS  Google Scholar 

  69. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  PubMed  Google Scholar 

  70. Kung C-W, Otake K, Buru CT et al (2018) Increased electrical conductivity in a mesoporous metal–organic framework featuring metallacarboranes guests. J Am Chem Soc 140:3871–3875. https://doi.org/10.1021/jacs.8b00605

    Article  CAS  PubMed  Google Scholar 

  71. Shahrokhian S, Khaki Sanati E, Hosseini H (2018) Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Biosens Bioelectron 112:100–107. https://doi.org/10.1016/j.bios.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  72. Shahrokhian S, Ezzati M, Hosseini H (2020) Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta 210:120696. https://doi.org/10.1016/j.talanta.2019.120696

    Article  CAS  PubMed  Google Scholar 

  73. Meng W, Wen Y, Dai L et al (2018) A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sensors Actuators B Chem 260:852–860. https://doi.org/10.1016/j.snb.2018.01.109

    Article  CAS  Google Scholar 

  74. Wei X, Guo J, Lian H et al (2021) Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics. Sensors Actuators B Chem 329:129205. https://doi.org/10.1016/j.snb.2020.129205

    Article  CAS  Google Scholar 

  75. Asadian E, Shahrokhian S, Iraji Zad A (2018) Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite. J Electroanal Chem 808:114–123. https://doi.org/10.1016/j.jelechem.2017.10.060

    Article  CAS  Google Scholar 

  76. Dong S, Zhang D, Suo G et al (2016) Exploiting multi-function metal-organic framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. Anal Chim Acta 934:203–211. https://doi.org/10.1016/j.aca.2016.05.040

    Article  CAS  PubMed  Google Scholar 

  77. Chen J, Xu Q, Shu Y, Hu X (2018) Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 184:136–142. https://doi.org/10.1016/j.talanta.2018.02.057

    Article  CAS  PubMed  Google Scholar 

  78. Zhang X, Xu Y, Ye B (2018) An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J Alloys Compd 767:651–656. https://doi.org/10.1016/j.jallcom.2018.07.175

    Article  CAS  Google Scholar 

  79. Haldorai Y, Choe SR, Huh YS, Han Y-K (2018) Metal-organic framework derived nanoporous carbon/Co3O4 composite electrode as a sensing platform for the determination of glucose and high-performance supercapacitor. Carbon N Y 127:366–373. https://doi.org/10.1016/j.carbon.2017.11.022

  80. Zhang X, Luo J, Tang P et al (2018) Ultrasensitive binder-free glucose sensors based on the pyrolysis of in situ grown Cu MOF. Sensors Actuators B Chem 254:272–281. https://doi.org/10.1016/j.snb.2017.07.024

    Article  CAS  Google Scholar 

  81. Yang N, Guo K, Zhang Y, Xu C (2020) Engineering the valence state of ZIF-67 by Cu2O for efficient nonenzymatic glucose detection. J Mater Chem B 8:2856–2861. https://doi.org/10.1039/D0TB00094A

  82. Shu Y, Yan Y, Chen J et al (2017) Ni and NiO nanoparticles decorated metal–organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interfaces 9:22342–22349. https://doi.org/10.1021/acsami.7b07501

    Article  CAS  PubMed  Google Scholar 

  83. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85(7):3561–3569. https://doi.org/10.1021/ac3030976

    Article  CAS  PubMed  Google Scholar 

  84. Xi K, Cao S, Peng X et al (2013) Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur batteries. Chem Commun 49:2192–2194. https://doi.org/10.1039/C3CC38009B

    Article  CAS  Google Scholar 

  85. Xu G, Ding B, Shen L et al (2013) Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. J Mater Chem A 1:4490–4496. https://doi.org/10.1039/C3TA00004D

    Article  CAS  Google Scholar 

  86. Zhang Y, Xu J, Xia J et al (2018) MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing. ACS Appl Mater Interfaces 10:39151–39160. https://doi.org/10.1021/acsami.8b11867

    Article  CAS  PubMed  Google Scholar 

  87. Wei P, Shen J, Wu K, Hu C (2018) Tuning electrochemical behaviors of N-methyl-2-pyrrolidone liquid exfoliated graphene nanosheets by centrifugal speed-based grading. Carbon N Y 129:183–190. https://doi.org/10.1016/j.carbon.2017.11.100

    Article  CAS  Google Scholar 

  88. Wu C, Cheng Q, Wu K (2015) Electrochemical functionalization of N-Methyl-2-pyrrolidone-Exfoliated graphene nanosheets as highly sensitive analytical platform for phenols. Anal Chem 87:3294–3299. https://doi.org/10.1021/ac504309j

    Article  CAS  PubMed  Google Scholar 

  89. Wu C, Tang Y, Wan C et al (2015) Enhanced-oxidation and highly-sensitive detection of acetaminophen, guanine and adenine using NMP-exfoliated graphene nanosheets-modified electrode. Electrochim Acta 166:285–292. https://doi.org/10.1016/j.electacta.2015.03.088

    Article  CAS  Google Scholar 

  90. Chen X, Liu D, Cao G et al (2019) In situ synthesis of a sandwich-like graphene@ZIF-67 heterostructure for highly sensitive nonenzymatic glucose sensing in human serums. ACS Appl Mater Interfaces 11:9374–9384. https://doi.org/10.1021/acsami.8b22478

    Article  CAS  PubMed  Google Scholar 

  91. Tavakkoli H, Akhond M, Ghorbankhani GA, Absalan G (2020) Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection. Microchim Acta 187:105. https://doi.org/10.1007/s00604-019-4064-7

    Article  CAS  Google Scholar 

  92. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286. https://doi.org/10.1038/nchembio.85

    Article  CAS  PubMed  Google Scholar 

  93. Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184:1267–1283. https://doi.org/10.1007/s00604-017-2179-2

  94. Lopa NS, Rahman MM, Ahmed F et al (2018) A base-stable metal-organic framework for sensitive and non-enzymatic electrochemical detection of hydrogen peroxide. Electrochim Acta 274:49–56. https://doi.org/10.1016/j.electacta.2018.03.148

    Article  CAS  Google Scholar 

  95. Dang W, Sun Y, Jiao H et al (2020) AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2. J Electroanal Chem 856:113592. https://doi.org/10.1016/j.jelechem.2019.113592

  96. Sun Y, Li Y, Wang N et al (2018) Copper-based metal-organic framework for non-enzymatic electrochemical detection of glucose. Electroanalysis 30:474–478. https://doi.org/10.1002/elan.201700629

    Article  CAS  Google Scholar 

  97. Cai Z-X, Wang Z-L, Kim J, Yamauchi Y (2019) Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv Mater 31:1804903. https://doi.org/10.1002/adma.201804903

    Article  CAS  Google Scholar 

  98. Wang Q, Yang Y, Gao F et al (2016) Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples. ACS Appl Mater Interfaces 8:32477–32487. https://doi.org/10.1021/acsami.6b11965

    Article  CAS  PubMed  Google Scholar 

  99. Sun D, Yang D, Wei P et al (2020) One-step electrodeposition of silver nanostructures on 2D/3D metal–organic framework ZIF-67: comparison and application in electrochemical detection of hydrogen peroxide. ACS Appl Mater Interfaces 12:41960–41968. https://doi.org/10.1021/acsami.0c11269

    Article  CAS  PubMed  Google Scholar 

  100. Yang L, Xu C, Ye W, Liu W (2015) An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sensors Actuators B Chem 215:489–496. https://doi.org/10.1016/j.snb.2015.03.104

  101. Lin J, Hassan M, Bo X, Guo L (2017) Synthesis of iron-based metal-organic framework@large mesoporous carbon composites and their electrocatalytic properties. J Electroanal Chem 801:373–380. https://doi.org/10.1016/j.jelechem.2017.08.026

    Article  CAS  Google Scholar 

  102. Dong Y, Zheng J (2020) Environmentally friendly synthesis of Co-based zeolitic imidazolate framework and its application as H2O2 sensor. Chem Eng J 392:123690. https://doi.org/10.1016/j.cej.2019.123690

  103. Zhang D, Zhang J, Shi H et al (2015) Redox-active microsized metal-organic framework for efficient nonenzymatic H2O2 sensing. Sensors Actuators B Chem 221:224–229. https://doi.org/10.1016/j.snb.2015.06.079

  104. Fu Y, Dai J, Ge Y et al (2018) A novel non-enzymatic electrochemical hydrogen peroxide sensor based on a metal-organic framework/carbon nanofiber composite. Mol. 23:2552

    Article  Google Scholar 

  105. Liu B, Wang X, Zhai Y et al (2020) Facile preparation of well conductive 2D MOF for nonenzymatic detection of hydrogen peroxide: relationship between electrocatalysis and metal center. J Electroanal Chem 858:113804. https://doi.org/10.1016/j.jelechem.2019.113804

    Article  CAS  Google Scholar 

  106. Zhang T, Du J, Zhang H, Xu C (2016) In-situ growth of ultrathin ZIF-67 nanosheets on conductive Ti@TiO2/CdS substrate for high-efficient electrochemical catalysis. Electrochim Acta 219:623–629. https://doi.org/10.1016/j.electacta.2016.10.002

    Article  CAS  Google Scholar 

  107. Dai H, Chen Y, Niu X et al (2018) High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au@C-Co3O4 heterostructures. Biosens Bioelectron 118:36–43. https://doi.org/10.1016/j.bios.2018.07.022

  108. Zhou E, Zhang Y, Li Y, He X (2014) Cu(II)-based MOF immobilized on multiwalled carbon nanotubes: synthesis and application for nonenzymatic detection of hydrogen peroxide with high sensitivity. Electroanalysis 26:2526–2533. https://doi.org/10.1002/elan.201400341

    Article  CAS  Google Scholar 

  109. Ling W, Hao Y, Wang H et al (2019) A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology 30:424002. https://doi.org/10.1088/1361-6528/ab30b6

    Article  CAS  PubMed  Google Scholar 

  110. Zhang D, Zhang J, Zhang R et al (2015) 3D porous metal-organic framework as an efficient electrocatalyst for nonenzymatic sensing application. Talanta 144:1176–1181. https://doi.org/10.1016/j.talanta.2015.07.091

    Article  CAS  PubMed  Google Scholar 

  111. Wang M-Q, Zhang Y, Bao S-J et al (2016) Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochim Acta 190:365–370. https://doi.org/10.1016/j.electacta.2015.12.199

    Article  CAS  Google Scholar 

  112. Zhou B, Liang L-M, Yao J (2015) Nanoflakes of an aminoacid-based chiral coordination polymer: synthesis, optical and electrochemical properties, and application in electrochemical sensing of H2O2. J Solid State Chem 223:152–155. https://doi.org/10.1016/j.jssc.2014.11.002

    Article  CAS  Google Scholar 

  113. Yang J, Zhao F, Zeng B (2015) One-step synthesis of a copper-based metal–organic framework–graphene nanocomposite with enhanced electrocatalytic activity. RSC Adv 5:22060–22065. https://doi.org/10.1039/C4RA16950F

    Article  CAS  Google Scholar 

  114. Yang J, Ye H, Zhao F, Zeng B (2016) A novel CuxO nanoparticles@ZIF-8 composite derived from core–shell metal–organic frameworks for highly selective electrochemical sensing of hydrogen peroxide. ACS Appl Mater Interfaces 8:20407–20414. https://doi.org/10.1021/acsami.6b06436

  115. Xu Z, Yang L, Xu C (2015) Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal Chem 87:3438–3444. https://doi.org/10.1021/ac5047278

    Article  CAS  PubMed  Google Scholar 

  116. Li C, Zhang T, Zhao J et al (2017) Boosted sensor performance by surface modification of bifunctional rht-type metal–organic framework with nanosized electrochemically reduced graphene oxide. ACS Appl Mater Interfaces 9:2984–2994. https://doi.org/10.1021/acsami.6b13788

    Article  CAS  PubMed  Google Scholar 

  117. Zhang Y, Bo X, Luhana C et al (2013) Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem Commun 49:6885–6887. https://doi.org/10.1039/C3CC43292K

    Article  CAS  Google Scholar 

  118. Ma J, Zheng J (2020) Voltammetric determination of hydrogen peroxide using AuCu nanoparticles attached on polypyrrole-modified 2D metal-organic framework nanosheets. Microchim Acta 187:389. https://doi.org/10.1007/s00604-020-04355-y

    Article  CAS  Google Scholar 

  119. Hira SA, Nallal M, Rajendran K et al (2020) Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor. Anal Chim Acta 1118:26–35. https://doi.org/10.1016/j.aca.2020.04.043

    Article  CAS  PubMed  Google Scholar 

  120. Wang Q, Zhang X, Chai X et al (2021) An electrochemical sensor for H2O2 based on Au nanoparticles embedded in UiO-66 metal–organic framework films. ACS Appl Nano Mater 4:6103–6110. https://doi.org/10.1021/acsanm.1c00915

  121. Ge F, Li M-M, Ye H, Zhao B-X (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372. https://doi.org/10.1016/j.jhazmat.2011.12.013

  122. Ma L, Wang Q, Islam SM et al (2016) Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42– Ion. J Am Chem Soc 138:2858–2866. https://doi.org/10.1021/jacs.6b00110

  123. Chen M, Gan N, Zhou Y et al (2017) A novel aptamer- metal ions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sensors Actuators B Chem 242:1201–1209. https://doi.org/10.1016/j.snb.2016.08.185

    Article  CAS  Google Scholar 

  124. Lu M, Deng Y, Luo Y et al (2019) Graphene aerogel–metal–organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal Chem 91:888–895. https://doi.org/10.1021/acs.analchem.8b03764

    Article  CAS  PubMed  Google Scholar 

  125. Wang Y, Wang L, Huang W et al (2017) A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J Mater Chem A 5:8385–8393. https://doi.org/10.1039/C7TA01066D

    Article  CAS  Google Scholar 

  126. Malinauskas A (2004) Self-doped polyanilines. J Power Sources 126:214–220. https://doi.org/10.1016/j.jpowsour.2003.08.008

    Article  CAS  Google Scholar 

  127. Yang T, Yang R, Chen H et al (2015) Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine. ACS Appl Mater Interfaces 7:2867–2872. https://doi.org/10.1021/am5081716

    Article  CAS  PubMed  Google Scholar 

  128. Zhao X, Bai W, Yan Y et al (2019) Core-shell self-doped polyaniline coated metal-organic-framework (SPAN@UIO-66-NH2) screen printed electrochemical sensor for Cd2+ ions. J Electrochem Soc 166:B873–B880. https://doi.org/10.1149/2.0251912jes

  129. Cai F, Wang Q, Chen X et al (2017) Selective binding of Pb2+ with manganese-terephthalic acid MOF/SWCNTs: theoretical modeling, experimental study and electroanalytical application. Biosens Bioelectron 98:310–316. https://doi.org/10.1016/j.bios.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  130. Xu Z, Meng Q, Cao Q et al (2020) Selective sensing of copper ions by mesoporous porphyrinic metal–organic framework nanoovals. Anal Chem 92:2201–2206. https://doi.org/10.1021/acs.analchem.9b04900

    Article  CAS  PubMed  Google Scholar 

  131. Baghayeri M, Ghanei-Motlagh M, Tayebee R et al (2020) Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources. Anal Chim Acta 1099:60–67. https://doi.org/10.1016/j.aca.2019.11.045

    Article  CAS  PubMed  Google Scholar 

  132. Roushani M, Valipour A, Saedi Z (2016) Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sensors Actuators B Chem 233:419–425. https://doi.org/10.1016/j.snb.2016.04.106

  133. Jin J-C, Wu J, Yang G-P et al (2016) A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem Commun 52:8475–8478. https://doi.org/10.1039/C6CC03063G

  134. Guo H, Zheng Z, Zhang Y et al (2017) Highly selective detection of Pb2+ by a nanoscale Ni-based metal–organic framework fabricated through one-pot hydrothermal reaction. Sensors Actuators B Chem 248:430–436. https://doi.org/10.1016/j.snb.2017.03.147

  135. Wang Y, Du K, Chen Y et al (2016) Electrochemical determination of lead based on metal–organic framework MIL-101(Cr) by differential pulse anodic stripping voltammetry. Anal Methods 8:3263–3269. https://doi.org/10.1039/C6AY00183A

    Article  CAS  Google Scholar 

  136. Wang Y, Ge H, Wu Y et al (2014) Construction of an electrochemical sensor based on amino-functionalized metal-organic frameworks for differential pulse anodic stripping voltammetric determination of lead. Talanta 129:100–105. https://doi.org/10.1016/j.talanta.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  137. Ye W, Li Y, Wang J et al (2020) Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. J Solid State Chem 281:121032. https://doi.org/10.1016/j.jssc.2019.121032

    Article  CAS  Google Scholar 

  138. Ru J, Wang X, Cui X et al (2021) GaOOH-modified metal-organic frameworks UiO-66-NH2: selective and sensitive sensing four heavy-metal ions in real wastewater by electrochemical method. Talanta 234:122679. https://doi.org/10.1016/j.talanta.2021.122679

    Article  CAS  PubMed  Google Scholar 

  139. Wang Y, Wu Y, Xie J, Hu X (2013) Metal–organic framework modified carbon paste electrode for lead sensor. Sensors Actuators B Chem 177:1161–1166. https://doi.org/10.1016/j.snb.2012.12.048

    Article  CAS  Google Scholar 

  140. Zhang W, Fan S, Li X et al (2020) Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Microchim Acta 187:69. https://doi.org/10.1007/s00604-019-4044-y

    Article  CAS  Google Scholar 

  141. Ma L, Zhang X, Ikram M et al (2020) Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem Eng J 395:125216. https://doi.org/10.1016/j.cej.2020.125216

    Article  CAS  Google Scholar 

  142. Tang J, Jiang S, Liu Y et al (2018) Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchim Acta 185:486. https://doi.org/10.1007/s00604-018-3025-x

    Article  CAS  Google Scholar 

  143. Xu M-L, Gao Y, Han XX, Zhao B (2017) Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. J Agric Food Chem 65:6719–6726. https://doi.org/10.1021/acs.jafc.7b02504

    Article  CAS  PubMed  Google Scholar 

  144. Chansi, Bhardwaj R, Rao RP et al (2020) Layered construction of nano immuno-hybrid embedded MOF as an electrochemical sensor for rapid quantification of total pesticides load in vegetable extract. J Electroanal Chem 873:114386. https://doi.org/10.1016/j.jelechem.2020.114386

    Article  CAS  Google Scholar 

  145. Deep A, Bhardwaj SK, Paul AK et al (2015) Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 65:226–231. https://doi.org/10.1016/j.bios.2014.10.045

    Article  CAS  PubMed  Google Scholar 

  146. Tu X, Gao F, Ma X et al (2020) Mxene/carbon nanohorn/β-cyclodextrin-metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J Hazard Mater 396:122776. https://doi.org/10.1016/j.jhazmat.2020.122776

    Article  CAS  PubMed  Google Scholar 

  147. Wang Z, Ma B, Shen C, Cheong L-Z (2019) Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor. Talanta 197:356–362. https://doi.org/10.1016/j.talanta.2019.01.052

    Article  CAS  PubMed  Google Scholar 

  148. Ma B, Cheong L-Z, Weng X et al (2018) Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim Acta 283:509–516. https://doi.org/10.1016/j.electacta.2018.06.176

    Article  CAS  Google Scholar 

  149. Al’ Abri AM, Abdul Halim SN, Abu Bakar NK et al (2019) Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. J Environ Sci Heal Part B 54:930–941. https://doi.org/10.1080/03601234.2019.1652072

    Article  CAS  Google Scholar 

  150. Ya-wei H, Wei Wang HL, Li Q, Niu KK (2018) Preparation of a Cu-MOF as an electrode modifier for the determination of carbendazim in water. Int J Electrochem Sci 13:5031–5040. https://doi.org/10.20964/2018.05.70

    Article  CAS  Google Scholar 

  151. Tu X, Xie Y, Ma X et al (2019) Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen. J Electroanal Chem 848:113268. https://doi.org/10.1016/j.jelechem.2019.113268

    Article  CAS  Google Scholar 

  152. Hadi M, Bayat M, Mostaanzadeh H et al (2018) Sensitive electrochemical detection of picloram utilising a multi-walled carbon nanotube/Cr-based metal-organic framework composite-modified glassy carbon electrode. Int J Environ Anal Chem 98:197–214. https://doi.org/10.1080/03067319.2018.1441838

    Article  CAS  Google Scholar 

  153. Gan T, Li J, Li H et al (2019) Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides. Nanoscale 11:7839–7849. https://doi.org/10.1039/C9NR01101C

    Article  CAS  PubMed  Google Scholar 

  154. Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 8th editio edn. Oxford University Press, New York

    Google Scholar 

  155. Si B, Song E (2018) Recent advances in the detection of neurotransmitters. Chemosens. 6:1

    Article  Google Scholar 

  156. Wang L, Feng X, Ren L et al (2015) Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923. https://doi.org/10.1021/jacs.5b01613

    Article  CAS  PubMed  Google Scholar 

  157. Ding S, Yan Q, Jiang H et al (2016) Fabrication of Pd@ZIF-8 catalysts with different Pd spatial distributions and their catalytic properties. Chem Eng J 296:146–153. https://doi.org/10.1016/j.cej.2016.03.098

    Article  CAS  Google Scholar 

  158. Li Z, Gao Y, Wu J et al (2016) Synthesis and electrochemical characterization of Ni-B/ZIF-8 as electrode materials for supercapacitors. Electron Mater Lett 12:645–650. https://doi.org/10.1007/s13391-016-6149-3

    Article  CAS  Google Scholar 

  159. Chen B, Zhang Y, Lin L et al (2020) Au nanoparticles @metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: preparation, characterization, and electrochemical detection of tyrosine. J Electroanal Chem 863:114052. https://doi.org/10.1016/j.jelechem.2020.114052

    Article  CAS  Google Scholar 

  160. Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37. https://doi.org/10.3945/an.110.1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wei X, Li L, Lian H et al (2021) Grain-like chiral metal-organic framework/multi-walled carbon nanotube composited electrosensing interface for enantiorecognition of Tryptophan. J Electroanal Chem 886:115108. https://doi.org/10.1016/j.jelechem.2021.115108

    Article  CAS  Google Scholar 

  162. Wu X-Q, Feng P-Q, Guo Z, Wei X (2020) Water-stable 1D double-chain Cu metal–organic framework-based electrochemical biosensor for detecting l-tyrosine. Langmuir 36:14123–14129. https://doi.org/10.1021/acs.langmuir.0c02799

    Article  CAS  PubMed  Google Scholar 

  163. Cai X, Mo Y, Ruan Z, Mo G (2021) Highly active catalyst using zeolitic imidazolate framework derived nano-polyhedron for the electro-oxidation of l-cysteine and amperometric sensing. J Colloid Interface Sci 603:822–833. https://doi.org/10.1016/j.jcis.2021.06.154

    Article  CAS  PubMed  Google Scholar 

  164. Zheng Y-Y, Li C-X, Ding X-T et al (2017) Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chin Chem Lett 28:1473–1478. https://doi.org/10.1016/j.cclet.2017.03.014

    Article  CAS  Google Scholar 

  165. Yu G, Xia J, Zhang F, Wang Z (2017) Hierarchical and hybrid RGO/ZIF-8 nanocomposite as electrochemical sensor for ultrasensitive determination of dopamine. J Electroanal Chem 801:496–502. https://doi.org/10.1016/j.jelechem.2017.08.038

    Article  CAS  Google Scholar 

  166. Tang J, Liu Y, Hu J et al (2020) Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: a sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen. Microchem J 155:104759. https://doi.org/10.1016/j.microc.2020.104759

    Article  CAS  Google Scholar 

  167. Zhang W, Duan D, Liu S et al (2018) Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples. Biosens Bioelectron 118:129–136. https://doi.org/10.1016/j.bios.2018.07.047

    Article  CAS  PubMed  Google Scholar 

  168. Huang T-Y, Kung C-W, Liao Y-T et al (2017) Enhanced charge collection in MOF-525–PEDOT nanotube composites enable highly sensitive biosensing. Adv Sci 4:1700261. https://doi.org/10.1002/advs.201700261

    Article  CAS  Google Scholar 

  169. Li Y, Huangfu C, Du H et al (2013) Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis. J Electroanal Chem 709:65–69. https://doi.org/10.1016/j.jelechem.2013.09.017

    Article  CAS  Google Scholar 

  170. Ma B, Guo H, Wang M et al (2019) Electrocatalysis of Cu−MOF/graphene composite and its sensing application for electrochemical simultaneous determination of dopamine and paracetamol. Electroanalysis 31:1002–1008. https://doi.org/10.1002/elan.201800890

    Article  CAS  Google Scholar 

  171. Li J, Xia J, Zhang F et al (2018) A novel electrochemical sensor based on copper-based metal-organic framework for the determination of dopamine. J Chin Chem Soc 65:743–749. https://doi.org/10.1002/jccs.201700410

    Article  CAS  Google Scholar 

  172. Sofi FA, Bhat MA, Majid K (2019) Cu2+-BTC based metal–organic framework: a redox accessible and redox stable MOF for selective and sensitive electrochemical sensing of acetaminophen and dopamine. New J Chem 43:3119–3127. https://doi.org/10.1039/C8NJ06224B

  173. Nie M, Lu S, Lei D et al (2017) Rapid synthesis of ZIF-8 nanocrystals for electrochemical detection of dopamine. J Electrochem Soc 164:H952–H957. https://doi.org/10.1149/2.1521713jes

    Article  CAS  Google Scholar 

  174. Qu Z, Muhammad Y, He W et al (2021) Designing C-Fe-O bonded MIL-88B(Fe)/jasmine petal-derived-carbon composite biosensor for the simultaneous detection of dopamine and uric acid. Chem Eng J 404:126570. https://doi.org/10.1016/j.cej.2020.126570

    Article  CAS  Google Scholar 

  175. Hu B, Liu Y, Wang Z-W et al (2018) Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid. Appl Surf Sci 441:694–707. https://doi.org/10.1016/j.apsusc.2018.02.093

    Article  CAS  Google Scholar 

  176. Wang Y, Zhang Y, Hou C, Liu M (2015) Magnetic Fe3O4@MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine. RSC Adv 5:98260–98268. https://doi.org/10.1039/C5RA20996J

    Article  CAS  Google Scholar 

  177. Gao L-L, Sun W-J, Yin X-M et al (2019) Graphite paste electrodes modified with a sulfo-functionalized metal-organic framework (type MIL-101) for voltammetric sensing of dopamine. Microchim Acta 186:762. https://doi.org/10.1007/s00604-019-3943-2

    Article  CAS  Google Scholar 

  178. Chauhan N, Tiwari S, Narayan T, Jain U (2019) Bienzymatic assembly formed @ Pt nano sensing framework detecting acetylcholine in aqueous phase. Appl Surf Sci 474:154–160. https://doi.org/10.1016/j.apsusc.2018.04.056

    Article  CAS  Google Scholar 

  179. Zhang W, Jia G, Li Z et al (2017) Selective electrochemical detection of dopamine on polyoxometalate-based metal–organic framework and its composite with reduced graphene oxide. Adv Mater Interfaces 4:1601241. https://doi.org/10.1002/admi.201601241

    Article  CAS  Google Scholar 

  180. Zhang J, Wang D, Li Y (2019) Ratiometric electrochemical sensors associated with self-cleaning electrodes for simultaneous detection of adrenaline, serotonin, and tryptophan. ACS Appl Mater Interfaces 11:13557–13563. https://doi.org/10.1021/acsami.8b22572

    Article  CAS  PubMed  Google Scholar 

  181. Ko M, Mendecki L, Eagleton AM et al (2020) Employing conductive metal–organic frameworks for voltammetric detection of neurochemicals. J Am Chem Soc 142:11717–11733. https://doi.org/10.1021/jacs.9b13402

    Article  CAS  PubMed  Google Scholar 

  182. Savitz J (2020) The kynurenine pathway: a finger in every pie. Mol Psychiatry 25:131–147. https://doi.org/10.1038/s41380-019-0414-4

    Article  PubMed  Google Scholar 

  183. Florea A, Guo Z, Cristea C et al (2015) Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta 138:71–76. https://doi.org/10.1016/j.talanta.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  184. Xiao L, Xu R, Yuan Q, Wang F (2017) Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 167:39–43. https://doi.org/10.1016/j.talanta.2017.01.078

    Article  CAS  PubMed  Google Scholar 

  185. Chen H, Wu X, Zhao R et al (2019) Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Microchim Acta 186:623. https://doi.org/10.1007/s00604-019-3737-6

    Article  CAS  Google Scholar 

  186. Fu K, Zhang R, He J et al (2019) Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosens Bioelectron 143:111636. https://doi.org/10.1016/j.bios.2019.111636

    Article  CAS  PubMed  Google Scholar 

  187. Gill AAS, Singh S, Agrawal N et al (2020) A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Microchim Acta 187:79. https://doi.org/10.1007/s00604-019-4015-3

    Article  CAS  Google Scholar 

  188. Wang J, Zhao J, Yang J et al (2020) An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Microchim Acta 187:380. https://doi.org/10.1007/s00604-020-04305-8

    Article  CAS  Google Scholar 

  189. Zhang J, Liu J, Zhang Y et al (2017) Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Microchim Acta 185:78. https://doi.org/10.1007/s00604-017-2551-2

    Article  CAS  Google Scholar 

  190. Ling P, Lei J, Zhang L, Ju H (2015) Porphyrin-encapsulated metal–organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal Chem 87:3957–3963. https://doi.org/10.1021/acs.analchem.5b00001

    Article  CAS  PubMed  Google Scholar 

  191. Chen J, Yu C, Zhao Y et al (2017) A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron 91:892–899. https://doi.org/10.1016/j.bios.2016.10.067

    Article  CAS  PubMed  Google Scholar 

  192. Yuan G, Wang L, Mao D et al (2017) Voltammetric hybridization assay for the β1-adrenergic receptor gene (ADRB1), a marker for hypertension, by using a metal organic framework (Fe-MIL-88NH2) with immobilized copper(II) ions. Microchim Acta 184:3121–3130. https://doi.org/10.1007/s00604-017-2333-x

    Article  CAS  Google Scholar 

  193. Liao X, Ju H (2015) In situ quantitation of intracellular microRNA in the whole cell cycle with a functionalized carbon nanosphere probe. Chem Commun 51:2141–2144. https://doi.org/10.1039/C4CC09097G

    Article  CAS  Google Scholar 

  194. Li Y, Yu C, Yang B et al (2018) Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens Bioelectron 102:307–315. https://doi.org/10.1016/j.bios.2017.11.047

    Article  CAS  PubMed  Google Scholar 

  195. Sun Y, Jin H, Jiang X, Gui R (2020) Black phosphorus nanosheets adhering to thionine-doped 2D MOF as a smart aptasensor enabling accurate capture and ratiometric electrochemical detection of target microRNA. Sensors Actuators B Chem 309:127777. https://doi.org/10.1016/j.snb.2020.127777

    Article  CAS  Google Scholar 

  196. Wang H, Jian Y, Kong Q et al (2018) Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. Sensors Actuators B Chem 257:561–569. https://doi.org/10.1016/j.snb.2017.10.188

    Article  CAS  Google Scholar 

  197. Shi P, Zhang Y, Yu Z, Zhang S (2017) Label-free electrochemical detection of ATP based on amino-functionalized metal-organic framework. Sci Rep 7:6500. https://doi.org/10.1038/s41598-017-06858-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Feng X, Lin S, Li M et al (2017) Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67. Anal Chim Acta 984:96–106. https://doi.org/10.1016/j.aca.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  199. Peng Z, Jiang Z, Huang X, Li Y (2016) A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode. RSC Adv 6:13742–13748. https://doi.org/10.1039/C5RA25251B

    Article  CAS  Google Scholar 

  200. Zhai X, Li S, Chen X et al (2020) Coating silver metal-organic frameworks onto nitrogen-doped porous carbons for the electrochemical sensing of cysteine. Microchim Acta 187:493. https://doi.org/10.1007/s00604-020-04469-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation of China (21905180 and 51778369) are gratefully acknowledged. We appreciate the Instrument Analysis Centre of Shenzhen University (Lihu campus) for providing equipment for material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palakollu, V.N., Chen, D., Tang, JN. et al. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Microchim Acta 189, 161 (2022). https://doi.org/10.1007/s00604-022-05238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05238-0

Keywords

Navigation