Skip to main content
Log in

Sensitive electrochemical platform for trace determination of Pb2+ based on multilayer Bi-MOFs/reduced graphene oxide films modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A multilayer Bi-BTC/reduced graphene oxide (Bi-BTC/rGO) (BTC, 1,3,5-benzenetricarboxylic acid) film electrode was adopted to construct a highly sensitive Pb2+ electrochemical sensor. The multilayer Bi-BTC/rGO films were prepared via alternate cast of Bi-BTC and graphene oxide (GO) on a glassy carbon electrode, followed by electro-reduction of the GO components. Bi-BTC has porous broom-like structure and its organic ligand has abundant functional groups, which are favorable for Pb2+ adsorption and preconcentration. The introduction of rGO layer improves the conductivity of the MOFs material. Moreover, the multilayer composite structure greatly increased the exposure of active sites and the surface area of reactive contact, finally realizing the highly sensitive detection of Pb2+. Pb2+ was determined by differential pulse anodic stripping voltammetry and the response current was recorded at − 0.62 V. The [Bi-BTC/rGO]2 electrode provides a wide linear response ranging from 0.062 to 20.72 μg/L and a low limit of detection (LOD) of 0.021 μg/L (S/N = 3) for Pb2+, which is lower than the guideline value proposed by the World Health Organization. The method has been applied to determine Pb2+ in industrial wastewater with recoveries of 99.2–104% and RSDs of 3.4–4.0% (n = 3).

Graphical abstract

Graphical abstract

Schematic representation of an electrochemical sensor for the detection of Pb2+ was designed based on long broom-like structure bismuth(II) metallic organic framework/reduced graphene oxide ([Bi-BTC /rGO]2)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Needleman HL, Bellinger DC (1991) The health effects of low level exposure to lead. Annu Rev Public Health 12(1):111–140

    Article  CAS  Google Scholar 

  2. Loomis D, Grosse Y, Laubysecretan B, Ghissassi FE, Bouvard V, Benbrahimtallaa L, Guha N, Baan RA, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14(13):1262–1263

    Article  CAS  Google Scholar 

  3. Priya T, Dhanalakshmi N, Karthikeyan V, Thinakaran N (2019) Highly selective simultaneous trace determination of Cd2+ and Pb2+ using porous graphene/carboxymethyl cellulose/fondaparinux nanocomposite modified electrode. J Electroanal Chem 833:543–551

    Article  CAS  Google Scholar 

  4. Arai Y, Lanzirotti A, Sutton SR, Davis JA, Sparks DL (2003) Arsenic speciation and reactivity in poultry litter. Environ Sci Technol 37(18):4083–4090

    Article  CAS  Google Scholar 

  5. Soylak M, Kizil N (2011) Determination of some heavy metals by flame atomic absorption spectrometry before coprecipitation with neodymium hydroxide. J AOAC Int 94(3):978–984

    Article  CAS  Google Scholar 

  6. Yu LY, Zhang Q, Yang BR, Xu Q, Xu Q, Hu XY (2018) Electrochemical sensor construction based on Nafion/calcium lignosulphonate functionalized porous graphene nanocomposite and its application for simultaneous detection of trace Pb2+ and Cd2+. Sensors Actuators B Chem 259:540–551

    Article  CAS  Google Scholar 

  7. Anjos MJD, Lopes RT, Jesus EFOD, Assis JT, Cesareo R, Barradas CAA (2000) Quantitative analysis of metals in soil using X-ray fluorescence. Spectrochim Acta B Atom Spectrosc 55(7):1189–1194

    Article  Google Scholar 

  8. Yang S, Dai X, Stogin BB, Wong TS (2016) Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci U S A 113(2):268–273

    Article  CAS  Google Scholar 

  9. Zhi L, Zuo W, Chen F, Wang B (2016) 3D MoS2 composition aerogels as chemosensors and adsorbents for colorimetric detection and high-capacity adsorption of Hg2+. ACS Sustain Chem Eng 4(6):3398–3408

    Article  CAS  Google Scholar 

  10. Xing H, Xu J, Zhu X, Duan X, Yang T (2016) Highly sensitive simultaneous determination of cadmium (ii), lead (ii), copper (ii), and mercury (ii) ions on n-doped graphene modified electrode. J Electroanal Chem 760:52–58

    Article  CAS  Google Scholar 

  11. Zuo YX, Xu JK, Zhu XF, Duan XM, Lu LM, Yu YF (2019) Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta 186(3):171–188

    Article  Google Scholar 

  12. Shiu K, Chan O, Pang S (1995) Factors affecting the electroanalytical behavior of polypyrrole-modified electrodes bearing complexing ligands. Anal Chem 67(17):2828–2834

    Article  CAS  Google Scholar 

  13. Florence TM (1970) Anodic stripping voltammetry with a glassy carbon electrode mercury-plated in situ. J Electroanal Chem 27(2):273–281

    Article  CAS  Google Scholar 

  14. Toghill K, Wildgoose G, Moshar A, Mulcahy C, Compton R (2008) The fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium(ii) and lead(ii). Electroanalysis 20(16):1731–1737

    Article  CAS  Google Scholar 

  15. Ghazali NN, Nor NM, Razak KA, Lockman Z, Hattori T (2020) Hydrothermal synthesis of bismuth nanosheets for modified APTES-functionalized screen-printed carbon electrode in lead and cadmium detection. J Nanopart Res 22(7):1–11

    Article  Google Scholar 

  16. Shi L, Li Y, Rong X, Wang Y, Ding S (2017) Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Anal Chim Acta 968:21–29

    Article  CAS  Google Scholar 

  17. Stassen I, Styles MJ, Van Assche TR, Campagnol N, Fransaer J, Denayer JF, Tan JC, Falcaro P, Vos DED, Ameloot R (2015) Electrochemical film deposition of the zirconium metal-organic framework UIO-66 and application in a miniaturized sorbent trap. Chem Mater 27(5):1801–1807

    Article  CAS  Google Scholar 

  18. Li Y, Jiang K, Zhang J, Xia T, Cui Y, Yang Y, Qian G (2018) A turn-on fluorescence probe based on post-modified metal–organic frameworks for highly selective and fast-response hypochlorite detection. Polyhedron 148:76–80

    Article  CAS  Google Scholar 

  19. Li C, Xu H, Gao J, Du W, Shangguan L, Zhang X, Lin RB, Wu H, Zhou W, Liu XF, Yao JM, Chen B (2019) Tunable titanium metal–organic frameworks with infinite 1D Ti-O rods for efficient visible-light-driven photocatalytic H2 evolution. J Mater Chem 7(19):11928–11933

    Article  CAS  Google Scholar 

  20. Gich M, Fernandezsanchez C, Cotet LC, Niu P, Roig A (2013) Facile synthesis of porous bismuth–carbon nanocomposites for the sensitive detection of heavy metals. J Mater Chem 1(37):11410–11418

    Article  CAS  Google Scholar 

  21. Sahoo PK, Panigrahy B, Sahoo S, Satpati AK, Li D, Bahadur D (2013) In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: as an electroactive material for analysis of heavy metals. Biosens Bioelectron 43:293–296

    Article  CAS  Google Scholar 

  22. Cerovac S, Guzsvány V, Kónya Z, Ashrafi AM, Švancara I, Rončević S, Kukovecz Á, Dalmacija B, Vytřas K (2015) Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134:640–649

    Article  CAS  Google Scholar 

  23. Tan Z, Wu WQ, Feng CQ, Wu HM, Zhang ZW (2020) Simultaneous determination of heavy metals by an electrochemical method based on a nanocomposite consisting of fluorinated graphene and gold nanocage. Microchim Acta 187(7):414–423

    Article  CAS  Google Scholar 

  24. Yang Y, Wang Q, Qiu W, Guo H, Gao F (2016) Covalent immobilization of Cu3(BTC)2 at chitosan–electroreduced graphene oxide hybrid film and its application for simultaneous detection of dihydroxybenzene isomers. J Phys Chem C 120(18):9794–9803

    Article  CAS  Google Scholar 

  25. Li XY, Cao L, Wu C, Kang B (2019) Strategy for highly sensitive electrochemical sensing: in situ coupling of a metal-organic framework with ball-mill-exfoliated graphene. Anal Chem 91(9):6043–6050

    Article  CAS  Google Scholar 

  26. Rani S, Kapoor S, Sharma B, Kumar S, Malhotra R, Dilbaghi N (2020) Fabrication of Zn-MOF@rGO based sensitive nanosensor for the real time monitoring of hydrazine. J Alloys Compd 816:152509

    Article  CAS  Google Scholar 

  27. Wang G, Liu Y, Huang B, Qin X, Zhang X, Dai Y (2015) A novel metal–organic framework based on bismuth and trimesic acid: synthesis, structure and properties. Dalton Trans 44(37):16238–16241

    Article  CAS  Google Scholar 

  28. Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt(iii)-(ethylenedinitrilo(tetraacetate) on mercury electrodes. Anal Chem 36(4):932–934

    Article  CAS  Google Scholar 

  29. Wang ZM, Guo HW, Liu E, Yang GC, Khun NW (2010) Bismuth/polyaniline /glassy carbon electrodes prepared with different protocols for stripping voltammetric determination of trace Cd and Pb in solutions having surfactants. Electroanalysis 22(2):209–215

    Article  CAS  Google Scholar 

  30. He Y, Wang ZH, Ma L, Zhou LY, Jiang YJ, Gao J (2020) Synthesis of bismuth nanoparticle-loaded cobalt ferrite for electrochemical detection of heavy metal ions. RSC Adv 10(46):27697–27705

    Article  CAS  Google Scholar 

  31. Mafa PJ, Idris AO, Mabuba N, Arotiba OA (2016) Electrochemical co-detection of As (III), Hg (II) and Pb (II) on a bismuth modified exfoliated graphite electrode. Talanta 153:99–106

    Article  CAS  Google Scholar 

  32. Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76(2):301–308

    Article  CAS  Google Scholar 

  33. Sayato Y (1989) WHO guidelines for drinking-water quality. Eisei Kagaku 35(5):307–312

    Article  Google Scholar 

Download references

Funding

We are grateful to the National Natural Science Foundation of China (21665010, 51862014, 31741103, and 51302117), the Natural Science Foundation of Jiangxi Province (20202ACBL213009, 20192BBEL50029), Jiangxi Outstanding Young Talents Funding Scheme (20162BCB23030), Provincial Projects for Postgraduate Innovation in Jiangxi (NDYC2020-S002), and the Natural Science Foundation of Nanchang City (No. 2018CXTD014) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangxing Chen, Xigen Huang or Limin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Zhong, W., Gao, F. et al. Sensitive electrochemical platform for trace determination of Pb2+ based on multilayer Bi-MOFs/reduced graphene oxide films modified electrode. Microchim Acta 187, 603 (2020). https://doi.org/10.1007/s00604-020-04571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04571-6

Keywords

Navigation