Skip to main content
Log in

Magnetic relaxation switch sensor based on aptamer-modified poly-L-lysine-ferroferric oxide magnetic nanoparticles and graphene oxide for the determination of insecticides in vegetables

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple and effective graphene oxide-magnetic relaxation switch (GO-MRS) sensor that combines graphene oxide (GO) and aptamer-modified poly-L-lysine(PLL)-Fe3O4 nanoparticles (Fe3O4@PLL–Apt NPs) was designed for the detection of acetamiprid (ACE). In this sensor, Fe3O4@PLL–Apt NPs acted as a relaxation signal probe and GO facilitated the generation of relaxation signal changes (dispersion/aggregation shift), while the aptamer is a molecular component that recognizes ACE. This GO-assisted magnetic signal probe improves the stability of magnetic nanoparticles in solution and enhances their sensitivity to small molecules while avoiding cross-reactions. Under optimal conditions, the sensor exhibits a wide working range (10–80 nM) and low detection limit (8.43 nM). The spiked recoveries ranged from 96.54 to 103.17%, with a relative standard deviation (RSD) of less than 2.3%. In addition, the performance of the GO-MRS sensor matched that of the standard method (liquid chromatography-mass spectrometry (LC–MS)), indicating that the GO-MRS sensor is suitable for the detection of ACE in vegetables.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [Xin Wang], upon reasonable request.

References

  1. Seccia S, Fidente P, Barbini DA, Morrica P (2005) Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal Chim Acta 553(1):21–26. https://doi.org/10.1016/j.aca.2005.08.006

    Article  CAS  Google Scholar 

  2. Ragas AMJ, Oldenkamp R, Preeker NL, Wernicke J, Schlink U (2011) Cumulative risk assessment of chemical exposures in urban environments. Environ Int 37(5):872–881

    Article  CAS  PubMed  Google Scholar 

  3. Jin D, Xu Q, Yu L, Mao A, Hu X (2016) A novel sensor for the detection of acetamiprid in vegetables based on its photocatalytic degradation compound. Food Chem 194:959–965. https://doi.org/10.1016/j.envint.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  4. Kuang L, Wang Z, Cheng Y, Li Y, Li H, Zhang J, Shen Y, Li J, Xu G (2023) Residue levels and risk assessment of pesticides in litchi and longan of China. J Food Compos Anal 115:104921. https://doi.org/10.1016/j.jfca.2022.104921

    Article  CAS  Google Scholar 

  5. Tsourkas A, Hofstetter O, Hofstetter H, Weissleder R, Josephson L (2004) Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew Chem Int Ed 43(18):2395–2399. https://doi.org/10.1002/anie.200352998

    Article  CAS  Google Scholar 

  6. Cai S, Liang G, Zhang P, Chen H, Zhang S, Liu B, Kong J (2011) A miniature chip for protein detection based on magnetic relaxation switches. Biosens Bioelectron 26(5):2258–2263

    Article  CAS  PubMed  Google Scholar 

  7. Silva RN, Vijayan AN, Westbrook E, Yu Z, Zhang P (2019) Nanoparticle assisted nuclear relaxation-based oligonucleotide detection. Anal Chim Acta 1062:118–123. https://doi.org/10.1016/j.bios.2010.09.045

    Article  CAS  PubMed  Google Scholar 

  8. Zheng W, Zeng L, Chen Y (2020) Bioorthogonal reactions amplify magnetic nanoparticles binding and assembly for ultrasensitive magnetic resonance sensing. Anal Chem 92(3):2787–2793. https://doi.org/10.1021/acs.analchem.9b05097

    Article  CAS  PubMed  Google Scholar 

  9. Dong Y, Zheng W, Chen D, Li X, Wang J, Wang Z, Chen Y (2019) Click reaction-mediated T2 immunosensor for ultrasensitive detection of pesticide residues via brush-like nanostructure-triggered coordination chemistry. J Agric Food Chem 67(35):9942–9949. https://doi.org/10.1021/acs.jafc.9b03463

    Article  CAS  PubMed  Google Scholar 

  10. Dong Y, Chen R, Wu L, Wang X, Jiang F, Fan Z, Huang C, Chen Y (2022) Magnetic relaxation switching biosensor via polydopamine nanoparticle mediated click chemistry for detection of chlorpyrifos. Biosens Bioelectron 207:114127. https://doi.org/10.1016/j.bios.2022.114127

    Article  CAS  PubMed  Google Scholar 

  11. Wu L, Zhou M, Liu C, Chen X, Chen Y (2021) Double-enzymes-mediated Fe2+/Fe3+ conversion as magnetic relaxation switch for pesticide residues sensing. J Hazard Mater 403:123619. https://doi.org/10.1016/j.jhazmat.2020.123619

    Article  CAS  PubMed  Google Scholar 

  12. Xianyu Y, Wang Q, Chen Y (2018) Magnetic particles-enabled biosensors for point-of-care testing. TrAC Trends Anal Chem 106:213–224. https://doi.org/10.1016/j.trac.2018.07.010

    Article  CAS  Google Scholar 

  13. Dong M, Zheng W, Chen Y, Ran B, Qian Z, Jiang X (2018) Cu-T1 sensor for versatile analysis. Anal Chem 90(4):2833–2838. https://doi.org/10.1021/acs.analchem.7b04971

    Article  CAS  PubMed  Google Scholar 

  14. Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal Chem 83(20):7795–7799. https://doi.org/10.1021/ac201442a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piacenza E, Presentato A, Turner RJ (2018) Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Crit Rev Biotechnol 38(8):1137–1156. https://doi.org/10.1080/07388551.2018.1440525

    Article  CAS  PubMed  Google Scholar 

  16. Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S (2018) Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J Nanobiotechnology 16(1):80. https://doi.org/10.1186/s12951-018-0405-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang JY, Guo QY, Yao ZY, Yin N, Ren SY, Li Y, Li S, Peng Y, Bai JL, Ning BA, Liang J, Gao ZX (2020) A low-field nuclear magnetic resonance DNA-hydrogel nanoprobe for bisphenol A determination in drinking water. Mikrochim Acta 187(6):333. https://doi.org/10.1007/s00604-020-04307-6

    Article  CAS  PubMed  Google Scholar 

  18. Huang L, Liu S, Ren S, Zhang M, Wang T, Wang X, Gao Z (2021) Magnetic relaxation switch biosensors based on self-assembly of polystyrene microspheres and magnetic nanoparticles for detection of bisphenol A. ACS Appl Nano Mater 4(6):5963–5971. https://doi.org/10.1021/acsanm.1c00845

    Article  CAS  Google Scholar 

  19. Liu B, Salgado S, Maheshwari V, Liu J (2016) DNA adsorbed on graphene and graphene oxide: fundamental interactions, desorption and applications. Curr Opin Colloid Interface Sci 26:41–49. https://doi.org/10.1016/j.cocis.2016.09.001

    Article  CAS  Google Scholar 

  20. Wu M, Kempaiah R, Huang PJ, Maheshwari V, Liu J (2011) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6):2731–2738. https://doi.org/10.1021/la1037926

    Article  CAS  PubMed  Google Scholar 

  21. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840. https://doi.org/10.1021/nl1041929

    Article  CAS  PubMed  Google Scholar 

  22. Shao H, Yoon TJ, Liong M, Weissleder R, Lee H (2010) Magnetic nanoparticles for biomedical NMR-based diagnostics. Beilstein J Nanotechnol 1:142–154. https://doi.org/10.3762/bjnano.1.17

  23. Liu T, Liu Y, Chen Y, Liu S, Maitz MF, Wang X, Zhang K, Wang J, Wang Y, Chen J, Huang N (2014) Immobilization of heparin/poly-(L)-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomater 10(5):1940–1954. https://doi.org/10.1016/j.actbio.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  24. Mateu-Sánchez M, Moreno M, Arrebola FJ, Martínez Vidal JL (2003) Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry. Anal Sci 19(5):701–704. https://doi.org/10.2116/analsci.19.701

    Article  PubMed  Google Scholar 

  25. Shi H, Zhao G, Liu M, Fan L, Cao T (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761. https://doi.org/10.1016/j.jhazmat.2013.06.031

    Article  CAS  PubMed  Google Scholar 

  26. Di Muccio A, Fidente P, Barbini DA, Dommarco R, Seccia S, Morrica P (2006) Application of solid-phase extraction and liquid chromatography–mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J Chromatogr A 1108(1):1–6. https://doi.org/10.1016/j.chroma.2005.12.111

    Article  CAS  PubMed  Google Scholar 

  27. Poshteh Shirani M, Rezaei B, Ensafi AA (2019) A novel optical sensor based on carbon dots embedded molecularly imprinted silica for selective acetamiprid detection. Spectrochim Acta, Part A 210:36–43. https://doi.org/10.1016/j.saa.2018.08.030

    Article  CAS  Google Scholar 

  28. Lin B, Yu Y, Li R, Cao Y, Guo M (2016) Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sens Actuators, B 229:100–109. https://doi.org/10.1016/j.snb.2016.01.114

    Article  CAS  Google Scholar 

  29. Huang L, Wang X (2021) Rapid and sensitive detection of bisphenol A in water by LF-NMR based on magnetic relaxation switch sensor. Microchem J 163:105911. https://doi.org/10.1016/j.microc.2020.105911

    Article  CAS  Google Scholar 

  30. Epa U (2005) Code of federal regulations (CFR). Washington, DC: US Environmental Protection Agency (Part 180, July 1, 40)

  31. Wu Z, Huang C, Dong Y, Zhao B, Chen Y (2022) Gold core @ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Control 137:108916. https://doi.org/10.1016/j.foodcont.2022.108916

    Article  CAS  Google Scholar 

  32. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81773482).

Author information

Authors and Affiliations

Authors

Contributions

Lei Huang: writing—review and editing, formal analysis, software; Kaili Pei: methodology, writing—original draf; Xin Wang: validation, project administration, supervision, funding acquisition.

Corresponding author

Correspondence to Xin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. A sensitive method for acetamiprid in vegetables was proposed.

2. A graphene oxide-magnetic relaxation switch (GO-MRS) sensor was designed.

3. This method has a satisfactory LOD (8.43 nM).

4. The detection of acetamiprid in real samples was agreed with LC-MS.

Supplementary Information

Below is the link to the electronic supplementary material.

604_2023_5817_MOESM1_ESM.pdf

Supplementary file1 (PDF 1637 KB) Instruments, experimental materials, detailed methods, and relevant analytical data can be found in the Electronic Supporting Material.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Pei, K. & Wang, X. Magnetic relaxation switch sensor based on aptamer-modified poly-L-lysine-ferroferric oxide magnetic nanoparticles and graphene oxide for the determination of insecticides in vegetables. Microchim Acta 190, 239 (2023). https://doi.org/10.1007/s00604-023-05817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05817-9

Keywords

Navigation