Skip to main content
Log in

Chiral MOFs encapsulated by polymers with poly-metallic coordination as chiral biosensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Chiral materials have drawn the widespread attention for their its chiral recognition ability. The design and synthesis of chiral material are of importance owing to the unpredictability in controlling chirality during the synthesis process. To circumvent problems, a chiral MOF (D-His-ZIF-8) was synthesized by ligand exchange of 2-methylimidazole (Hmim) on ZIF-8 by D-histidine (D-His), which can be treated as chiral host to distinguish amino acid enantiomers. The obtained D-His-ZIF-8 can provide chiral nanochannels for amino acid guests. Meanwhile, polynary transition-metal ion (Co2+ and Fe3+) coordinating with polydopamine (PDA) wrapped on the surface of D-His-ZIF-8 can increase the active sites. The electrochemical chiral recognition behavior showed that D-His-ZIF-8@CoFe-PDA exhibited good recognition of the tryptophan enantiomer (L/D-Trp) (working potential of −0.2 V vs. Hg/HgCl2). The LOD and LOQ of L-Trp were 0.066 mM and 0.22 mM, respectively, while the LOD and LOQ of D-Trp were 0.15 mM and 0.50 mM, respectively. Finally, the usefulness of D-His-ZIF-8@CoFe-PDA/GCE was evaluated with a recovery of 94.4–103%. The analysis of real  samples shows that D-His-ZIF-8@CoFe-PDA/GCE is a feasible sensing platform for the detection of L-Trp and D-Trp.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong B, Liu J, Xue M, Ni Z, Guo Y, Huang Z, Zhang Z (2021) One-fold anisotropy of silver chiral nanoparticles studied by second-harmonic generation. ACS Sens 6:454–460. https://doi.org/10.1021/acssensors.0c02031

    Article  CAS  PubMed  Google Scholar 

  2. Bromfield S, Smith D (2015) Heparin versus DNA: chiral preferences in polyanion binding to self-assembled multivalent (SAMul) nanostructures. J Am Chem Soc 137:10056–10059. https://doi.org/10.1021/jacs.5b04344

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y, Nguyen M, Natarajan A, Nguyen V, Kuzyk A (2018) A DNA Origami-based chiral plasmonic sensing device. ACS Appl Mater Interfaces 10:44221–44225. https://doi.org/10.1021/acsami.8b19153

    Article  CAS  PubMed  Google Scholar 

  4. Sholl D, Gellman A (2009) Developing chiral surfaces for enantioselective chemical processing. AIChE J 55:2484–2490. https://doi.org/10.1002/aic.12036

    Article  CAS  Google Scholar 

  5. Chen Y, Deng K, Lei S, Yang R, Li T, Gu Y, Yang Y, Qiu X, Wang C (2018) Single-molecule insights into surface-mediated homochirality in hierarchical peptide assembly. Nat Commun 9:2711. https://doi.org/10.1038/s41467-018-05218-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He S, Shang X, Lu W, Tian Y, Xu Z, Zhang W (2021) Electrochemical enantioselective sensor for effective recognition of tryptophan isomers based on chiral polyaniline twisted nanoribbon. Anal Chim Acta 1147:155–164. https://doi.org/10.1016/j.aca.2020.12.058

    Article  CAS  PubMed  Google Scholar 

  7. Yang X, Li Z, Polyakova T, Dejneka A, Zablotskii V, Zhang X (2020) Effect of static magnetic field on DNA synthesis: the interplay between DNA chirality and magnetic field left-right asymmetry. FASEB Bioadv 2:254–263. https://doi.org/10.1096/fba.2019-00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Z, Xu H, Wu D, Zhang J, Liu X, Gao S, Kong Y (2019) Electrochemical chiral recognition of tryptophan isomers based on nonionic surfactants assisted molecular imprinting sol-gel silica. ACS Appl Mater Interfaces 11:2840–2848. https://doi.org/10.1021/acsami.8b19399

    Article  CAS  PubMed  Google Scholar 

  9. Niu Q, Jin P, Huang Y, Fan L, Zhang C, Yang C, Dong C, Liang W, Shuang S (2022) A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Analyst 147:880–888. https://doi.org/10.1039/D1AN02262H

    Article  CAS  PubMed  Google Scholar 

  10. Shang X, Park C, Jung G, Kwak S, Oh J (2018) Highly enantioselective graphene-based chemical sensors prepared by chiral noncovalent functionalization. ACS Appl Mater Interfaces 10:36194–36201. https://doi.org/10.1021/acsami.8b13517

    Article  CAS  PubMed  Google Scholar 

  11. Okur S, Qin P, Chandresh A, Li C, Zhang Z, Lemmer U, Heinke L (2021) An enantioselective e-nose: an array of nanoporous homochiral MOF films for stereospecific sensing of chiral odors. Angew Chem Int Ed 60:3566–3571. https://doi.org/10.1002/anie.202013227

    Article  CAS  Google Scholar 

  12. Liu J, Zhou H, Yang W, Ariga K (2020) Soft nanoarchitectonics for enantioselective biosensing. Acc Chem Res 53:644–653. https://doi.org/10.1021/acs.accounts.9b00612

    Article  CAS  PubMed  Google Scholar 

  13. Jang S, Kim H (2020) Direct chiral 19F NMR analysis of fluorine-containing analytes and its application to simultaneous chiral analysis. Org Lett 22:7804–7808. https://doi.org/10.1021/acs.orglett.0c02620

    Article  CAS  PubMed  Google Scholar 

  14. Saz J, Marina M (2016) Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J Chromatogr A 1467:79–94. https://doi.org/10.1016/j.chroma.2016.08.029

    Article  CAS  PubMed  Google Scholar 

  15. Villar-Guerra R, Trent J, Chaires J (2018) G-quadruplex secondary structure from circular dichroism spectroscopy. Angew Chem Int Ed 57:7171–7175. https://doi.org/10.1002/ange.201709184

    Article  Google Scholar 

  16. Zhang X, Yin J, Yoon J (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114:4918–4959. https://doi.org/10.1021/cr400568b

    Article  CAS  PubMed  Google Scholar 

  17. Song G, Xu C, Li B (2015) Visual chiral recognition of mandelic acid enantiomers with L-tartaric acid−capped gold nanoparticles as colorimetric probes. Sens Actuators B: Chem 215:504–509. https://doi.org/10.1016/j.snb.2015.03.109

    Article  CAS  Google Scholar 

  18. Nalbant Esenturk E, Hight Walker A (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40:86–91. https://doi.org/10.1002/jrs.2084

    Article  CAS  Google Scholar 

  19. Niu X, Yang X, Mo Z, Liu N, Guo R, Pan Z, Liu Z (2019) Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Mikrochim Acta 186:557. https://doi.org/10.1007/s00604-019-3682-4

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Jiang X, Jin H, Gui R (2019) Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Anal Chim Acta 1083:101–109. https://doi.org/10.1016/j.aca.2019.07.027

    Article  CAS  PubMed  Google Scholar 

  21. Yu S, Wang Y, Chatterjee S, Liang F, Zhu F, Li H (2021) Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. Chinese Chem Lett 32:179–183. https://doi.org/10.1016/j.cclet.2020.11.055

    Article  CAS  Google Scholar 

  22. Wang L, Gao W, Na S, Pumera M (2021) Chiral protein−covalent organic framework 3D-printed structures as chiral biosensors. Anal Chem 93:5277–5283. https://doi.org/10.1021/acs.analchem.1c00322

    Article  CAS  PubMed  Google Scholar 

  23. Wu S, Ye Q, Wu D, Tao Y, Kong Y (2020) Enantioselective recognition of chiral tryptophan with achiral glycine through the strategy of chirality transfer. Anal Chem 92:11927–11934. https://doi.org/10.1021/acs.analchem.0c02335

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Li M, Zhu Z (2021) A disposable dual-signal enantioselective electrochemical sensor based on stereogenic porous chiral carbon nanotubes hydrogel. Talanta 232:122445. https://doi.org/10.1016/j.talanta.2021.122445

    Article  CAS  PubMed  Google Scholar 

  25. Yang Z, Zhu C, Li Z, Liu Y, Liu G, Cui Y (2014) Engineering chiral Fe(salen)-based metal–organic frameworks for asymmetric sulfide oxidation. Chem Commun 50:8775–8778. https://doi.org/10.1039/C4CC03308F

    Article  CAS  Google Scholar 

  26. Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal–organic frameworks. Chem Soc Rev 38:1248–1256. https://doi.org/10.1039/B807083K

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Xie S, Zi M, Yuan L (2020) Recent advances of application of porous molecular cages for enantioselective recognition and separation. J Sep Sci 43:134–149. https://doi.org/10.1002/jssc.201900762

    Article  CAS  PubMed  Google Scholar 

  28. Wei X, Chen Y, He S, Lian H, Cao X, Liu B (2021) L-histidine-regulated zeolitic imidazolate framework modified electrochemical interface for enantioselective determination of L-glutamate. Electrochimica Acta 400:139464. https://doi.org/10.1016/j.electacta.2021.139464

    Article  CAS  Google Scholar 

  29. Niu X, Yan S, Chen J, Li H, Wang K (2022) Enantioselective recognition of L/D-amino acids in the chiral nanochannels of a metal-organic framework. Electrochimica Acta 405:139809. https://doi.org/10.1016/j.electacta.2021.139809

    Article  CAS  Google Scholar 

  30. Xu M, Chen Q, Xie L, Li J (2020) Exchange reactions in metal-organic frameworks: New advances. Coordin Chem Rev 421. https://doi.org/10.1016/j.ccr.2020.213421

  31. He T, Kong X, Zhou J, Zhao C, Wang K, Wu X, Lv X, Si G, Li J, Nie Z (2021) A practice of reticular chemistry: construction of a robust mesoporous palladium metal-organic framework via metal metathesis. J Am Chem Soc 143:9901–9911. https://doi.org/10.1021/jacs.1c04077

    Article  CAS  PubMed  Google Scholar 

  32. Liang W, Rong Y, Fan L, Zhang C, Dong W, Li J, Niu J, Yang C, Shuang S, Dong C, Wong W (2019) Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin. Microchimica Acta 186. https://doi.org/10.1007/s00604-019-3861-3

  33. Wang H, Chen X, Li W, Zhou W, Guo X, Kang W, Kou D, Zhou Z, Meng Y, Tian Q, Wu S (2018) ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 176:573–581. https://doi.org/10.1016/j.talanta.2017.08.083

    Article  CAS  PubMed  Google Scholar 

  34. Xie G, Tian W, Wen L, Xiao K, Zhang Z, Liu Q, Hou G, Li P, Tian Y, Jiang L (2015) Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem Commun 51:3135–3138. https://doi.org/10.1039/C4CC09577D

    Article  CAS  Google Scholar 

  35. Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchimica Acta 181:501–509. https://doi.org/10.1007/s00604-014-1174-0

    Article  CAS  Google Scholar 

  36. Yu Y, Xu N, Zhang J, Wang B, Xie S, Yuan L (2020) Chiral metal-organic framework D-his-ZIF-8@SiO2 core–shell microspheres used for HPLC enantioseparations. ACS Appl. Mater Interfaces 12:16903–16911. https://doi.org/10.1021/acsami.0c01023

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Jin X, Zhu C, Liu Y, Tan H, Ku R, Zhang Y, Zhou L, Liu Z, Hwang S, Fan H (2021) Atomically dispersed Co2–N6 and Fe–N4 costructures boost oxygen reduction reaction in both alkaline and acidic media, Fan. Adv Mater 33:e2104718. https://doi.org/10.1002/adma.202104718

    Article  CAS  PubMed  Google Scholar 

  38. Liang Y, Wei J, Hu Y, Chen X, Zhang J, Zhang X, Jiang S, Tao S, Wang H (2017) Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale 9:5323–5328. https://doi.org/10.1039/C7NR00978J

    Article  CAS  PubMed  Google Scholar 

  39. Pei H, Chen F, Niu X, Jia Q, Guo R, Liu N, Mo Z (2021) Self-assembled chitosan-sodium alginate composite material for electrochemical recognition of tyrosine isomers. J Electroanal Chem 895. https://doi.org/10.1016/j.jelechem.2021.115525

  40. Wang Y, Wang L, Huang W, Zhang T, Hu X, Perman J, Ma S (2017) A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J Mater Chem A 5:8385–8393. https://doi.org/10.1039/C7TA01066D

    Article  CAS  Google Scholar 

  41. Feng S, Li Y, Zhang R, Li Y (2019) A novel electrochemical sensor based on molecularly imprinted polymer modified hollow N, S-Mo2C/C spheres for highly sensitive and selective carbendazim determination. Biosens. Bioelectron 142:111491. https://doi.org/10.1016/j.bios.2019.111491

    Article  CAS  PubMed  Google Scholar 

  42. Zou J, Yu J (2020) Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Mater Sci Eng C 112:110910. https://doi.org/10.1016/j.msec.2020.110910

    Article  CAS  Google Scholar 

  43. Xu J, Wang Q, Xuan C, Xia Q, Lin X, Fu Y (2016) Chiral recognition of tryptophan enantiomers based on β-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode. Electroanalysis 28:868–873. https://doi.org/10.1002/elan.201500548

    Article  CAS  Google Scholar 

  44. Bao L, Tao Y, Gu X, Yang B, Deng L, Kong Y (2016) Potato starch as a highly enantioselective system for temperature-dependent electrochemical recognition of tryptophan isomers. Electrochem Commun 64:21–25. https://doi.org/10.1016/j.elecom.2016.01.004

    Article  CAS  Google Scholar 

  45. Jing P, Yin Z, Cai W, Li J, Wu D, Kong Y (2022) The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Bioelectrochemistry 146:108110. https://doi.org/10.1016/j.bioelechem.2022.108110

    Article  CAS  PubMed  Google Scholar 

  46. Chen Q, Zhou J, Han Q, Wang Y, Fu Y (2012) Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Colloids Surf B Biointerfaces 92:130–135. https://doi.org/10.1016/j.colsurfb.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  47. Zou J, Lan X, Zhao G, Huang Z, Liu Y, Yu J (2020) Immobilization of 6-O-alpha-maltosyl-beta-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Mikrochim Acta 187:636. https://doi.org/10.1007/s00604-020-04606-y

    Article  CAS  PubMed  Google Scholar 

  48. Li Z, Mo Z, Meng S, Gao H, Niu X, Guo R, Wei T (2017) The construction of electrochemical chiral interfaces using hydroxypropyl chitosan. RSC Adv 7:8542–8549. https://doi.org/10.1039/C6RA27709H

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundations of China (grant no. 22065021), the Key Research Program of Gansu Province (21YF5GA076), the Province Nature Science Foundations of Gansu (grant no. 21JR7RA213), the Lanzhou Talent Innovation and Entrepreneurship Project (grant no. 2022-RC-33), the Hongliu Outstanding Youth Teacher Cultivate Project of Lanzhou University of Technology, and the Hongliu Excellent Youth Teacher Cultivate Project of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Niu or Kunjie Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Zhao, R., Yan, S. et al. Chiral MOFs encapsulated by polymers with poly-metallic coordination as chiral biosensors. Microchim Acta 190, 230 (2023). https://doi.org/10.1007/s00604-023-05807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05807-x

Keywords

Navigation