Skip to main content
Log in

Engineering of catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine to rapidly detect mRNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The catalytic hairpin-rigidified Y-shaped DNA through layer-by-layer assembly has been fixed on the surface of copper sulfide nanoparticles for the detection of survivin mRNA. The distance between the CHA probes fixed on the Y-shaped DNA is significantly shortened. The results show that the fluorescence of this nanomachine reached the maximum value in 50 min (excitation wavelength at 488 nm and emission wavelength 526 nm), and its reaction rate is more than 5-fold faster than that of the free-CHA control system. In addition, the nanomachine showed high sensitivity (LOD of 3.5 pM) and high specificity for the survivin mRNA detection. Given its fast response time and excellent detection performance, we envision that the catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine will offer potential applications in disease diagnostics and clinical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qing Z, Xu J, Hu J, Zheng J, He L, Zou Z, Yang S, Tan W, Yang R (2019) In situ amplification-based imaging of RNA in living cells. Angew Chem Int Ed 131:11698–11709. https://doi.org/10.1002/anie.201812449

    Article  CAS  Google Scholar 

  2. Jung C, Allen PB, Ellington AD (2016) A stochastic DNA-functionalized nanomachine that traverses a microparticle surface. Nat Nanotechnol 11:157–163. https://doi.org/10.1038/nnano.2015.246

    Article  CAS  PubMed  Google Scholar 

  3. Li D, Wu Y, Gan C, Yuan R, Xiang Y (2018) Bio-cleavable nanoprobes for target-triggered catalytic hairpin assembly amplification detection of microRNAs in live cancer cells. Nanoscale 10:17623–17628. https://doi.org/10.1039/C8NR05229H

    Article  CAS  PubMed  Google Scholar 

  4. Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang J, Lu Y (2017) Imaging endogenous metal ions in living cells using a DNAzyme-catalytic hairpin assembly probe. Angew Chem Int Ed 129:8847–8851. https://doi.org/10.1002/anie.201703540

    Article  CAS  Google Scholar 

  5. Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H (2019) Applications of catalytic hairpin assembly reaction in biosensing. Small 15:1902989. https://doi.org/10.1002/smll.201902989

    Article  CAS  Google Scholar 

  6. Wang S, Zhang F, Chen C, Cai C (2019) Ultrasensitive graphene quantum dots-based catalytic hairpin assembly amplification resonance light scattering assay for p53 mutant DNA detection. Sens Actuators B Chem 291:42–47. https://doi.org/10.1016/j.snb.2019.04.015

    Article  CAS  Google Scholar 

  7. Su F, Yang C, Yan X (2017) Intracellular messenger RNA triggered catalytic hairpin assembly for fluorescence imaging guided photothermal therapy. Anal Chem 89:7277–7281. https://doi.org/10.1021/acs.analchem.7b01348

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Chen C, Li S, Dong H, Dai W, Xu T, Liu Y, Yang F, Zhang X (2018) Target-triggered catalytic hairpin assembly-induced core-satellite nanostructures for high-sensitive “off-to-on” SRES detection of intracellular microRNA. Anal Chem 90:10591–10599. https://doi.org/10.1021/acs.analchem.8b02819

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Wu Y, Fu C, Cao H, Tan X, Shi W, Wu Z (2019) Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 143:111619. https://doi.org/10.1016/j.bios.2019.111619

    Article  CAS  PubMed  Google Scholar 

  10. Cao X, Sun Y, Mao Y, Ran M, Liu Y, Lu D, Bi C (2021) Rapid and sensitive detection of dual lung cancer-associated miRNA biomarkers by a novel SERS-LFA strip coupling with catalytic hairpin assembly signal amplification. J Mater Chem C 9:3661–3671. https://doi.org/10.1039/D0TC05737A

    Article  CAS  Google Scholar 

  11. Zhang Y, Yan Y, Chen W, Cheng W, Li S, Ding X, Li D, Wang H, Ju H, Ding S (2015) A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 68:343–349. https://doi.org/10.1016/j.bios.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  12. Qing M, Xie S, Cai W, Tang D, Tang Y, Zhang J, Yuan R (2018) Click chemistry reaction-triggered 3D DNA walking machine for sensitive electrochemical detection of copper ion. Anal Chem 90:11439–11445. https://doi.org/10.1021/acs.analchem.8b02555

    Article  CAS  PubMed  Google Scholar 

  13. Park C, Park H, Lee HJ, Lee HS, Park KH, Choi CH, Na S (2019) Double amplified colorimetric detection of DNA using gold nanoparticles, enzymes and a catalytic hairpin assembly. Microchim Acta 186:1–8. https://doi.org/10.1007/s00604-018-3154-2

    Article  CAS  Google Scholar 

  14. Cheng W, Zhang Y, Yu H, Diao W, Mo F, Wen B, Cheng W, Yan Y (2018) An enzyme-free colorimetric biosensing strategy for ultrasensitive and specific detection of microRNA based on mismatched stacking circuits. Sens Actuators B Chem 255:3298–3304. https://doi.org/10.1016/j.snb.2017.09.157

    Article  CAS  Google Scholar 

  15. Mudiyanselage APKKK, Yu Q, Leon-Duque MA, Zhao B, Wu R, You M (2018) Genetically encoded catalytic hairpin assembly for sensitive RNA imaging in live cells. J Am Chem Soc 140:8739–8745. https://doi.org/10.1021/jacs.8b03956

    Article  CAS  Google Scholar 

  16. Liu Y, Shen T, Li J, Gong H, Chen C, Chen X, Cai C (2017) Ratiometric fluorescence sensor for the microRNA determination by catalyzed hairpin assembly. ACS Sens 2:1430–1434. https://doi.org/10.1021/acssensors.7b00313

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Yin Y, Du S, Kong L, Chai Y, Li Z, Yuan R (2021) Dual 3D DNA nanomachine-mediated catalytic hairpin assembly for ultrasensitive detection of microRNA. Anal Chem 93:13952–13959. https://doi.org/10.1021/acs.analchem.1c03215

    Article  CAS  PubMed  Google Scholar 

  18. Cui W, Hu G, Lv E, Li C, Wang Z, Li Q, Qian Z, Wang J, Xu S, Wang R (2022) A label-free and enzyme-free fluorescent aptasensor for amplified detection of kanamycin in milk sample based on target-triggered catalytic hairpin assembly. Food Control 133:108654. https://doi.org/10.1016/j.foodcont.2021.108654

    Article  CAS  Google Scholar 

  19. Luan Q, Gan N, Cao Y, Li T (2017) Mimicking an enzyme-based colorimetric aptasensor for antibiotic residue detection in milk combining magnetic loop-DNA probes and CHA-assisted target recycling amplification. J Agric Food Chem 65:5731–5740. https://doi.org/10.1021/acs.jafc.7b02139

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Fu C, Xiang J, Cao Y, Deng Y, Xu R, Zhang H, Shi W (2020) “Signal-on” SERS sensing platform for highly sensitive and selective Pb2+ detection based on catalytic hairpin assembly. Anal Chim Acta 1127:106–113. https://doi.org/10.1016/j.aca.2020.06.038

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Xie J, Jiang B, Yuan R, Xiang Y (2017) Metallo-toehold-activated catalytic hairpin assembly formation of three-way DNAzyme junctions for amplified fluorescent detection of Hg2+. ACS Appl Mater Interfaces 9:5733–5738. https://doi.org/10.1021/acsami.6b13717

    Article  CAS  PubMed  Google Scholar 

  22. Tang Y, Lin Y, Yang X, Wang Z, Le XC, Li F (2015) Universal strategy to engineer catalytic DNA hairpin assemblies for protein analysis. Anal Chem 87:8063–8066. https://doi.org/10.1021/acs.analchem.5b02504

    Article  CAS  PubMed  Google Scholar 

  23. Yang L, Wu Q, Chen Y, Liu X, Wang F, Zhou X (2018) Amplified microRNA detection and intracellular imaging based on an autonomous and catalytic assembly of DNAzyme. ACS Sens 4:110–117. https://doi.org/10.1021/acssensors.8b01000

    Article  CAS  Google Scholar 

  24. Wan Y, Li G, Zou L, Wang H, Wang Q, Tan K, Liu X, Wang F (2021) A deoxyribozyme-initiated self-catalytic DNA machine for amplified live-cell imaging of microRNA. Anal Chem 93:11052–11059. https://doi.org/10.1021/acs.analchem.1c02596

    Article  CAS  PubMed  Google Scholar 

  25. Yang P, Chen H, Zhu Q, Chen Z, Yang Z, Yuan R, Li Y, Liang W (2022) A target-initiated autocatalytic 3D DNA nanomachine for high-efficiency amplified detection of microRNA. Talanta 240:123219. https://doi.org/10.1016/j.talanta.2022.123219

    Article  CAS  PubMed  Google Scholar 

  26. Bao T, Fu R, Jiang Y, Wen W, Zhang X, Wang S (2021) Metal-mediated polydopamine nanoparticles-DNA nanomachine coupling electrochemical conversion of metal-organic frameworks for ultrasensitive microRNA sensing. Anal Chem 93:13475–13484. https://doi.org/10.1021/acs.analchem.1c02125

    Article  CAS  PubMed  Google Scholar 

  27. Zou R, Wang S, Chen C, Chen X, Gong H, Cai C (2021) An enzyme-free DNA circuit-assisted MoS2 nanosheet enhanced fluorescence assay for label-free DNA detection. Talanta 222:121505. https://doi.org/10.1016/j.talanta.2020.121505

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Xiang X, Hu Y, Deng Y, Li L, Zhao W, Wu T (2021) A sensitive biomolecules detection device with catalytic hairpin assembly and cationic conjugated polymer-assisted dual signal amplification strategy. Talanta 223:121716. https://doi.org/10.1016/j.talanta.2020.121716

    Article  CAS  PubMed  Google Scholar 

  29. Feng Q, Zhang Y, Zhang W, Hao Y, Wang Y, Zhang H, Hou L, Zhang Z (2017) Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy. Acta Biomater 49:402–413. https://doi.org/10.1016/j.actbio.2016.11.035

    Article  CAS  PubMed  Google Scholar 

  30. Huo M, Li S, Zhang P, Feng Y, Liu Y, Wu N, Ju H, Ding L (2019) Nanoamplicon comparator for live-cell microRNA imaging. Anal Chem 91:3374–3381. https://doi.org/10.1021/acs.analchem.8b04661

    Article  CAS  PubMed  Google Scholar 

  31. Xiang MH, Li N, Liu JW, Yu RQ, Jiang JH (2020) A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy. Nanoscale 12:8727–8731. https://doi.org/10.1039/D0NR00941E

    Article  CAS  PubMed  Google Scholar 

  32. Zhao S, Zheng P, Wu Z, Jiang J (2022) DNA-templated bioorthogonal reactions via catalytic hairpin assembly for precise RNA imaging in live cells. Anal Chem 94:2693–2698. https://doi.org/10.1021/acs.analchem.1c05509

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Huang J, Quan K, Li J, Wu Y, Wei Q, Yang X, Wang K (2018) Hairpin-fuelled catalytic nanobeacons for amplified microRNA imaging in live cells. Chem Commun 54:10336–10339. https://doi.org/10.1039/C8CC06298F

    Article  CAS  Google Scholar 

  34. Zheng J, Li N, Li C, Wang X, Liu Y, Mao G, Ji X, He Z (2018) A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification. Biosens Bioelectron 107:40–46. https://doi.org/10.1016/j.bios.2018.01.054

    Article  CAS  PubMed  Google Scholar 

  35. Qing Z, Hu J, Xu J, Zou Z, Lei Y, Qing T, Yang R (2020) An intramolecular catalytic hairpin assembly on a DNA tetrahedron for mRNA imaging in living cells: improving reaction kinetics and signal stability. Chem Sci 11:1985–1990. https://doi.org/10.1039/C9SC04916A

    Article  CAS  Google Scholar 

  36. Duan Z, Li Z, Dai J, He H, Xiao D (2017) Nucleotide base analog pyrrolo-deoxycytidine as fluorescent probe signal for enzyme-free and signal amplified nucleic acids detection. Talanta. 164:34–38. https://doi.org/10.1021/acs.analchem.8b02555

    Article  CAS  PubMed  Google Scholar 

  37. Wei Q, Huang J, Li J, Wang J, Yang X, Liu J, Wang K (2018) A DNA nanowire based localized catalytic hairpin assembly reaction for microRNA imaging in live cells. Chem. Sci. 9:7802–7808. https://doi.org/10.1039/C8SC02943A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21775132), the National Natural Science Foundation of Hunan Province (No. 2022JJ30557), and Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization, the project of innovation team of the Ministry of Education (IRT_17R90).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen or Changqun Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Zou, R., Chen, F. et al. Engineering of catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine to rapidly detect mRNA. Microchim Acta 190, 210 (2023). https://doi.org/10.1007/s00604-023-05708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05708-z

Keywords

Navigation