Skip to main content
Log in

Double amplified colorimetric detection of DNA using gold nanoparticles, enzymes and a catalytic hairpin assembly

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an isothermal and ultrasensitive colorimetric DNA assay that consists of two amplification stages using enzymes and a catalytic hairpin assembly (CHA). The first step consists in the selective amplification of DNA using Klenow fragment and nicking enzyme. The second step consists in the amplification of the optical signal by using a catalytic hairpin assembly. After two amplification steps, the DNA reaction induces the aggregation of the red gold nanoparticles to give a blue color shift. The degree of aggregation can be quantified by measurement of the ratio of the UV-vis absorbances of the solutions at 620 and 524 nm which are the wavelengths of the aggregated gold nanoparticles and bare gold nanoparticles. The detection limit is as low as 3.1 fM. Due to the use of a specific enzyme, only the desired DNAs will be detected. The method can be applied to the determination of DNA of various lengths. Despite the presence of large amounts of wildtype DNA, it can readily detect a target DNA. Conceivably, the technique has a large potential because of its high sensitivity and selectivity.

Schematic presentation of DNA detection using gold nanoparticles (AuNP), enzymes and catalytic hairpin assembly (CHA). Effective DNA detection is achieved through the aggregation of AuNPs which is caused by DNA amplification using enzymes and signal amplification using CHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jang K, Choi J, Park C, Na S (2017) Label-free and high-sensitive detection of Kirsten rat sarcoma viral oncogene homolog and epidermal growth factor receptor mutation using kelvin probe force microscopy. Biosens Bioelectron 87:222–228. https://doi.org/10.1016/j.bios.2016.08.045

    Article  CAS  PubMed  Google Scholar 

  2. Yatabe Y, Hida T, Horio Y, Kosaka T, Takahashi T, Mitsudomi T (2006) A rapid, sensitive assay to detect EGFR mutation in small biopsy specimens from lung Cancer. The Journal of Molecular Diagnostics 8(3):335–341. https://doi.org/10.2353/jmoldx.2006.050104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dena M, Kelly B, Anand K, Madelyn SL, Michael M, Franziska B, Katharina V, Daniel L, Jorge N, Lyudmila B, Andrew HK, Korn WM, Ethan S, Michael C, Xing Y, Thomas M, Rachelle L, Meghana H, Craig Y, Joshua K, Yelena P, Devin S, David N, Peter K (2012) Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9(1):016003

    Article  Google Scholar 

  4. Marco W, Lyudmila B, Rogier B, Anand K, Meghana H, Edward HC, Dena M, Ajay S, Anthony P, Patricia T, Kelly B, Jorge N, Michel van den H, Peter K (2012) Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol 9(1):016005

    Article  Google Scholar 

  5. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P (2013) Multiplex Picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal Cancer patients. Clin Chem 59(12):1722–1731. https://doi.org/10.1373/clinchem.2013.206359

    Article  CAS  PubMed  Google Scholar 

  6. Tuononen K, Mäki-Nevala S, Sarhadi VK, Wirtanen A, Rönty M, Salmenkivi K, Andrews JM, Telaranta-Keerie AI, Hannula S, Lagström S, Ellonen P, Knuuttila A, Knuutila S (2013) Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma—superiority of NGS. Genes Chromosom Cancer 52(5):503–511. https://doi.org/10.1002/gcc.22047

    Article  CAS  PubMed  Google Scholar 

  7. Richardson AL, Iglehart JD (2012) BEAMing up personalized medicine: mutation detection in blood. Clin Cancer Res 18(12):3209–3211. https://doi.org/10.1158/1078-0432.ccr-12-0871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu X-W, Weng X-H, Wang C-L, Lin W-W, Liu A-L, Chen W, Lin X-H (2016) Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor. Biosens Bioelectron 80:411–417. https://doi.org/10.1016/j.bios.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  9. Wu C-C, Ko F-H, Yang Y-S, Hsia D-L, Lee B-S, Su T-S (2009) Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens Bioelectron 25(4):820–825. https://doi.org/10.1016/j.bios.2009.08.031

    Article  CAS  PubMed  Google Scholar 

  10. Liu Q, Yin Lim S, Soo RA, Kyoung Park M, Shin Y (2015) A rapid MZI-IDA sensor system for EGFR mutation testing in non-small cell lung cancer (NSCLC). Biosens Bioelectron 74:865–871. https://doi.org/10.1016/j.bios.2015.07.055

    Article  CAS  PubMed  Google Scholar 

  11. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081. https://doi.org/10.1126/science.277.5329.1078

    Article  CAS  PubMed  Google Scholar 

  12. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with Single Base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964. https://doi.org/10.1021/ja972332i

    Article  CAS  Google Scholar 

  13. Zhao W, Lam JCF, Chiuman W, Brook MA, Li Y (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small 4(6):810–816. https://doi.org/10.1002/smll.200700757

    Article  CAS  PubMed  Google Scholar 

  14. Ma H, Li Z, Xue N, Cheng Z, Miao X (2018) A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA. Microchim Acta 185(2):93

    Article  Google Scholar 

  15. Zeng Y, Zhang D, Qi P, Zheng L (2017) Colorimetric detection of DNA by using target catalyzed DNA nanostructure assembly and unmodified gold nanoparticles. Microchim Acta 184(12):4809–4815

    Article  CAS  Google Scholar 

  16. Liang C, Chu Y, Cheng S, Wu H, Kajiyama T, Kambara H, Zhou G (2012) Multiplex loop-mediated isothermal amplification detection by sequence-based barcodes coupled with nicking endonuclease-mediated pyrosequencing. Anal Chem 84(8):3758–3763. https://doi.org/10.1021/ac3003825

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Hu J, C-y Z (2012) Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay. Anal Chem 84(21):9544–9549. https://doi.org/10.1021/ac3024087

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Chen F, Wu Y, Dong Y, Fan C (2013) Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signalamplification. Biosens Bioelectron 42:56–61. https://doi.org/10.1016/j.bios.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  19. Cui L, Ke G, Zhang WY, Yang CJ (2011) A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification. Biosens Bioelectron 26(5):2796–2800. https://doi.org/10.1016/j.bios.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  20. Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48(37):6849–6852. https://doi.org/10.1002/anie.200901772

    Article  CAS  Google Scholar 

  21. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278. https://doi.org/10.1073/pnas.0407024101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park C, Song Y, Jang K, Choi C-H, Na S (2018) Target switching catalytic hairpin assembly and gold nanoparticle colorimetric for EGFR mutant detection. Sensors Actuators B Chem 261:497–504. https://doi.org/10.1016/j.snb.2018.01.183

    Article  CAS  Google Scholar 

  23. Li B, Jiang Y, Chen X, Ellington AD (2012) Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J Am Chem Soc 134(34):13918–13921. https://doi.org/10.1021/ja300984b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng A-X, Li J, Wang J-R, Song X-R, Chen G-N, Yang H-H (2012) Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly. Chem Commun 48(25):3112–3114

    Article  CAS  Google Scholar 

  25. Xu F, Dong H, Cao Y, Lu H, Meng X, Dai W, Zhang X, Al-Ghanim KA, Mahboob S (2016) Ultrasensitive and multiple disease-related MicroRNA detection based on tetrahedral DNA nanostructures and duplex-specific nuclease-assisted signal amplification. ACS Appl Mater Interfaces 8(49):33499–33505. https://doi.org/10.1021/acsami.6b12214

    Article  CAS  PubMed  Google Scholar 

  26. Yang W, Zhou X, Zhao J, Xu W (2018) A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Microchim Acta 185(2):100. https://doi.org/10.1007/s00604-017-2620-6

    Article  CAS  Google Scholar 

  27. Yue S, Zhao T, Qi H, Yan Y, Bi S (2017) Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise. Biosens Bioelectron 94:671–676. https://doi.org/10.1016/j.bios.2017.03.071

    Article  CAS  PubMed  Google Scholar 

  28. Zhuang J, Lai W, Chen G, Tang D (2014) A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation. Chem Commun 50(22):2935–2938. https://doi.org/10.1039/C3CC49873E

    Article  CAS  Google Scholar 

  29. Pantel K, Alix-Panabières C (2013) Real-time liquid biopsy in Cancer patients: fact or fiction? Cancer Res 73:6384–6388. https://doi.org/10.1158/0008-5472.can-13-2030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) under grant numbers of NRF-2016R1A5A1010148, NRF-2015M3A9D7031026 and funded by the Ministry of Science, ICT & Future Planning. C. Park and H. Park contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsoo Na.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Park, H., Lee, H.J. et al. Double amplified colorimetric detection of DNA using gold nanoparticles, enzymes and a catalytic hairpin assembly. Microchim Acta 186, 34 (2019). https://doi.org/10.1007/s00604-018-3154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3154-2

Keywords

Navigation