Skip to main content
Log in

Recent research progress in CDs@MOFs composites: fabrication, property modulation, and application

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) have exhibited a promising application prospect in many fields because of their good fluorescence properties, biocompatibility, low toxicity, and easy functionalization. In order to improve their photoelectricity and stability, metal–organic frameworks (MOFs) can be used as host materials to provide ideal carriers for CDs to realize the multifunctional composites of CDs and MOFs (CDs@MOFs). At present, CDs@MOFs composites have shown tremendous application potential because they have various advantages of both CDs and MOFs. In this review, the synthesis methods of CDs@MOFs composites are firstly introduced. Then, the influence of the synergy between CDs and MOFs on the regulation of their structures and optical properties is highlighted. Furthermore, the recent application researches of CDs@MOFs composites in fluorescent probes, solid-state lighting, and photoelectrocatalysis are generalized. Finally, the critical issues, challenges, and solutions on their structure and property regulation and application are put forward, and their commercialization direction is also prospected.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2013 Royal Society of Chemistry, Copyright 2013 American Chemical Society, Copyright 2015 Royal Society of Chemistry, Copyright 2018 Royal Society of Chemistry, Copyright 2018 Royal Society of Chemistry, Copyright 2018 Royal Society of Chemistry, Copyright 2019 Royal Society of Chemistry, Copyright 2019 American Chemical Society, and Copyright 2022 American Chemical Society

Fig. 2

Copyright 2018 Royal Society of Chemistry

Fig. 3

Copyright 2019 Elsevier

Fig. 4

Copyright 2019 Royal Society of Chemistry

Fig. 5

Copyright 2019 American Chemical Society

Fig. 6

Copyright 2021 Elsevier

Fig. 7

Copyright 2021 Elsevier. c Two strategies for assembling CD and MOF matrix. CMOFs and CDs@MOFs represent the products from the one-pot method and two-step method, respectively. d FTIR spectra of MOFs, CMOFs, and CDs@MOFs. Reproduced and adapted with permission from ref. [46]. Copyright 2019 Elsevier

Fig. 8

Copyright 2020 American Chemical Society

Fig. 9

Copyright 2020 Elsevier

Fig. 10

Copyright 2017 John Wiley and Sons

Fig. 11

Copyright 2020 American Chemical Society

Fig. 12

Copyright 2019 Elsevier

Fig. 13

Copyright 2019 Elsevier

Fig. 14

Copyright 2020 Elsevier. d Mechanism for ratiometric fluorescence sensing of PO43–. e Fluorescence and SOS spectra of the CDs@ZIF-90 system after adding different concentrations of PO43– (0, 1.0, 2.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, and 50.0 μmol L–1). Reproduced and adapted with permission from ref. [62]. Copyright 2020 American Chemical Society

Fig. 15

Copyright 2019 American Chemical Society

Fig. 16

Copyright 2018 Royal Society of Chemistry

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article.

References

  1. Zhang J, Yu SH (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393. https://doi.org/10.1016/j.mattod.2015.11.008

    Article  CAS  Google Scholar 

  2. Xia CL, Zhu SJ, Feng TL, Yang MX, Yang B (2019) Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci 6:1901316. https://doi.org/10.1002/advs.201901316

    Article  CAS  Google Scholar 

  3. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  Google Scholar 

  4. Ma YS, Cen Y, Sohail M, Xu GH, Wei FD, Shi ML, Xu XM, Song YY, Ma YJ, Hu Q (2017) A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Interfaces 9:33011–33019. https://doi.org/10.1021/acsami.7b10548

    Article  CAS  Google Scholar 

  5. Xiao L, Sun HD (2018) Novel properties and applications of carbon nanodots. Nanoscale Horiz 3:565–597. https://doi.org/10.1039/c8nh00106e

    Article  CAS  Google Scholar 

  6. Jiang K, Sun S, Zhang L, Lu Y, Wu AG, Cai CZ, Lin HW (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem 54:5360–5363. https://doi.org/10.1002/anie.201501193

    Article  CAS  Google Scholar 

  7. Bao L, Liu C, Zhang ZL, Pang DW (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27:1663–1667. https://doi.org/10.1002/adma.201405070

    Article  CAS  Google Scholar 

  8. Yao Y, Zhang HY, Hu KS, Nie G, Yang YY, Wang YX, Duan XG, Wang SB (2022) Carbon dots based photocatalysis for environmental applications. J Environ Chem Eng 10:107336. https://doi.org/10.1016/j.jece.2022.107336

    Article  CAS  Google Scholar 

  9. Xu JC, Miao YQ, Zheng JX, Yang YZ, Liu XG (2018) Ultrahigh brightness carbon dot-based blue electroluminescent LEDs by host-guest energy transfer emission mechanism. Adv Opt Mater 6:1800181. https://doi.org/10.1002/adom.201800181

    Article  CAS  Google Scholar 

  10. Xu JC, Miao YQ, Zheng JX, Wang H, Yang YY, Liu XG (2018) Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale 10:11211–11221. https://doi.org/10.1039/c8nr01834k

    Article  CAS  Google Scholar 

  11. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636. https://doi.org/10.1002/smll.201402648

    Article  CAS  Google Scholar 

  12. Chowdhuri AR, Tripathy S, Haldar C, Roy S, Sahu SK (2015) Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 3:9122–9131. https://doi.org/10.1039/c5tb01831e

    Article  Google Scholar 

  13. Dong YQ, Cai JH, You X, Chi YW (2015) Sensing applications of luminescent carbon based dots. Analyst 140:7468–7486. https://doi.org/10.1039/c5an01487e

    Article  CAS  Google Scholar 

  14. Guo XR, Yang J, Wei YB, Wang LS, Pi J (2022) Graphitic carbon nitride quantum dots in dual-mode fluorescence switching platforms for trace analysis of Ag(I) and l-cysteine. ACS Appl Nano Mater 5:4230–4240. https://doi.org/10.1021/acsanm.2c00180

    Article  CAS  Google Scholar 

  15. Ji W, Yu JL, Cheng JX, Fu LW, Zhang ZY, Li BW, Chen LX, Wang XY (2022) Dual-emissive near-infrared carbon dot-based ratiometric fluorescence sensor for lysozyme. ACS Appl Nano Mater 5:1656–1663. https://doi.org/10.1021/acsanm.1c04435

    Article  CAS  Google Scholar 

  16. Zhang ZP, Zhang J, Chen N, Qu LT (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5:8869–8890. https://doi.org/10.1039/c2ee22982j

    Article  CAS  Google Scholar 

  17. Liu J, Liu Y, Liu NY, Han YZ, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang ZH (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Sci 347:970–974. https://doi.org/10.1126/science.aaa5760

    Article  CAS  Google Scholar 

  18. Jin HL, Huang HH, He YH, Feng X, Wang S, Dai LM, Wang JC (2015) Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J Am Chem Soc 137:7588–7591. https://doi.org/10.1021/jacs.5b03799

    Article  CAS  Google Scholar 

  19. Li QQ, Zhang S, Dai LM, Li LS (2012) Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J Am Chem Soc 134:18932–18935. https://doi.org/10.1021/ja309270h

    Article  CAS  Google Scholar 

  20. Unnikrishnan B, Wu CW, Chen IWP, Chang HT, Lin CH, Huang CC (2016) Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain Chem Eng 4:3008–3016. https://doi.org/10.1021/acssuschemeng.5b01700

    Article  CAS  Google Scholar 

  21. Xue YQ, Zheng SS, Xue HG, Pang H (2019) Metal-organic framework composites and their electrochemical applications. J Mater Chem A 7:7301–7327. https://doi.org/10.1039/c8ta12178h

    Article  CAS  Google Scholar 

  22. Li S, Ma JP, Wu GG, Li JH, Ostovan A, Song ZH, Wang XY, Chen LX (2022) Determination of anionic perfluorinated compounds in water samples using cationic fluorinated metal organic framework membrane coupled with UHPLC-MS/MS. J Hazard Mater 429:128333. https://doi.org/10.1016/j.jhazmat.2022.128333

    Article  CAS  Google Scholar 

  23. Ullah M, Bai X, Chen JK, Lv H, Liu Z, Zhang Y, Wang J, Sun BH, Li L, Shi KY (2021) Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids Surf A 612:125972. https://doi.org/10.1016/j.colsurfa.2020.125972

  24. Li BZ, Suo TY, Xie SY, Xia AQ, Ma YJ, Huang H, Zhang X, Hu Q (2021) Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors. TrAC Trends Anal Chem 135:116163. https://doi.org/10.1016/j.trac.2020.116163

    Article  CAS  Google Scholar 

  25. Zou R, Teng X, Lin YJ, Lu C (2020) Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. TrAC Trends Anal Chem 132:116054. https://doi.org/10.1016/j.trac.2020.116054

    Article  CAS  Google Scholar 

  26. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev 44:6804–6849. https://doi.org/10.1039/c4cs00395k

    Article  CAS  Google Scholar 

  27. Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O (2011) MOF-74 building unit has a direct impact on toxic gas adsorption. Chem Eng Sci 66:163–170. https://doi.org/10.1016/j.ces.2010.10.002

    Article  CAS  Google Scholar 

  28. Lázaro IA, Forgan RS (2019) Application of zirconium MOFs in drug delivery and biomedicine. Coord Chem Rev 380:230–259. https://doi.org/10.1016/j.ccr.2018.09.009

    Article  CAS  Google Scholar 

  29. Dolgopolova EA, Rice AM, Martin CR, Shustova NB (2018) Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev 47:4710–4728. https://doi.org/10.1039/C7CS00861A

    Article  CAS  Google Scholar 

  30. Biswal BP, Shinde DB, Pillai VK, Banerjee R (2013) Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale 5:10556–10561. https://doi.org/10.1039/c3nr03511e

    Article  CAS  Google Scholar 

  31. Lin XM, Gao GM, Zheng LY, Chi YW, Chen GN (2014) Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal Chem 86:1223–1228. https://doi.org/10.1021/ac403536a

    Article  CAS  Google Scholar 

  32. Li JS, Tang YJ, Li SL, Zhang SR, Dai ZH, Si L, Lan YQ (2015) Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H2 storage and fluorescent sensing. Cryst Eng Comm 17:1080–1085. https://doi.org/10.1039/c4ce02020k

    Article  CAS  Google Scholar 

  33. Pan DY, Wang LJ, Li Z, Geng BJ, Zhang C, Zhan J, Yin LQ, Wang L (2018) Synthesis of graphene quantum dot/metal-organic framework nanocomposites as yellow phosphors for white light-emitting diodes. New J Chem 42:5083–5089. https://doi.org/10.1039/c7nj04909a

    Article  CAS  Google Scholar 

  34. Yao CX, Xu Y, Xia ZG (2018) A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection. J Mater Chem C 6:4396–4399. https://doi.org/10.1039/c8tc01018h

    Article  CAS  Google Scholar 

  35. Lin RB, Li SM, Wang JY, Xu JP, Xu CH, Wang J, Li CX, Li ZQ (2018) Facile generation of carbon quantum dots in MIL-53(Fe) particles as localized electron acceptors for enhancing their photocatalytic Cr(vi) reduction. Inorg Chem Front 5:3170–3177. https://doi.org/10.1039/c8qi01164h

    Article  CAS  Google Scholar 

  36. Wang AW, Hou YL, Kang FW, Lyu FC, Xiong Y, Chen WC, Lee CS, Xu ZT, Rogach AL, Lu J, Li YY (2019) Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. J Mater Chem C 7:2207–2211. https://doi.org/10.1039/c8tc04171g

    Article  CAS  Google Scholar 

  37. Chen YC, Chiang WH, Kurniawan D, Yeh PC, Otake KI, Kung CW (2019) Impregnation of graphene quantum dots into a metal-organic framework to render increased electrical conductivity and activity for electrochemical sensing. ACS Appl Mater Interfaces 11:35319–35326. https://doi.org/10.1021/acsami.9b11447

    Article  CAS  Google Scholar 

  38. Zhang QK, Zhang XP, Shu Y, Wang JH (2022) Metal-organic frameworks encapsulating carbon dots enable fast speciation of mono- and divalent copper. Anal Chem 94:2255–2262. https://doi.org/10.1021/acs.analchem.1c04943

    Article  CAS  Google Scholar 

  39. Feng L, Li JL, Day GS, Lv XL, Zhou HC (2019) Temperature-controlled evolution of nanoporous MOF crystallites into hierarchically porous superstructures. Chem 5:1265–1274. https://doi.org/10.1016/j.chempr.2019.03.003

    Article  CAS  Google Scholar 

  40. Zhan GW, Zeng HC (2018) Hydrogen spillover through Matryoshka-type (ZIFs@)n-1ZIFs nanocubes. Nat Commun 9:3778. https://doi.org/10.1038/s41467-018-06269-z

    Article  CAS  Google Scholar 

  41. He C, Xu P, Zhang XH, Long WJ (2022) The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: current state and future perspective. Carbon 186:91–127. https://doi.org/10.1016/j.carbon.2021.10.002

    Article  CAS  Google Scholar 

  42. Jalili R, Khataee A, Rashidi MR, Luque R (2019) Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione. Sensors Actuators B: Chem 297:126775. https://doi.org/10.1016/j.snb.2019.126775

    Article  CAS  Google Scholar 

  43. Xu LH, Fang GZ, Liu JF, Pan MF, Wang RR, Wang S (2016) One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing. J Mater Chem A 4:15880–15887. https://doi.org/10.1039/C6TA06403E

    Article  CAS  Google Scholar 

  44. Guo H, Wang XQ, Wu N, Xu MN, Wang MY, Zhang LW, Yang W (2021) In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Anal Chim Acta 1141:13–20. https://doi.org/10.1016/j.aca.2020.10.028

    Article  CAS  Google Scholar 

  45. Zhang YH, Zhou K, Qiu Y, Xia L, Xia ZN, Zhang KL, Fu QF (2021) Strongly emissive formamide-derived N-doped carbon dots embedded Eu(III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag+. Sens Actuators B 339:129922. https://doi.org/10.1016/j.snb.2021.129922

    Article  CAS  Google Scholar 

  46. Ma YS, Zhang XM, Bai JL, Huang K, Ren LL (2019) Facile, controllable tune of blue shift or red shift of the fluorescence emission of solid-state carbon dots. Chem Eng J 374:787–792. https://doi.org/10.1016/j.cej.2019.06.016

    Article  CAS  Google Scholar 

  47. Mo ZL, Tai DZ, Zhang H, Shahab A (2022) A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chem Eng J 443:136320. https://doi.org/10.1016/j.cej.2022.136320

    Article  CAS  Google Scholar 

  48. Ighalo JO, Rangabhashiyam S, Adeyanju CA, Ogunniyi S, Adeniyi AG, Igwegbe CA (2022) Zeolitic imidazolate frameworks (ZIFs) for aqueous phase adsorption-a review. J Ind Eng Chem 105:34–48. https://doi.org/10.1016/j.jiec.2021.09.029

    Article  CAS  Google Scholar 

  49. Li SM, Ji K, Zhang M, He CS, Wang J, Li ZQ (2020) Boosting the photocatalytic CO2 reduction of metal-organic frameworks by encapsulating carbon dots. Nanoscale 12:9533–9540. https://doi.org/10.1039/d0nr01696a

    Article  CAS  Google Scholar 

  50. Liu JQ, Li XL, Han YD, Wu JB, Zhang X, Wang ZP, Xu Y (2020) Synergetic effect of tetraethylammonium bromide addition on the morphology evolution and enhanced photoluminescence of rare-earth metal-organic frameworks. Inorg Chem 59:14318–14325. https://doi.org/10.1021/acs.inorgchem.0c02105

    Article  CAS  Google Scholar 

  51. Li GM, Wang X, Zhang JL (2018) Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging. CrystEngComm 20:5056–5060. https://doi.org/10.1039/c8ce00955d

    Article  CAS  Google Scholar 

  52. Yi KY, Zhang XT, Zhang L (2020) Eu3+@metal-organic frameworks encapsulating carbon dots as ratiometric fluorescent probes for rapid recognition of anthrax spore biomarker. Sci Total Environ 743:140692. https://doi.org/10.1016/j.scitotenv.2020.140692

    Article  CAS  Google Scholar 

  53. Gu ZG, Li DJ, Zheng C, Kang Y, Woll C, Zhang J (2017) MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications. Angew Chem Int Ed Engl 56:6853–6858. https://doi.org/10.1002/anie.201702162

    Article  CAS  Google Scholar 

  54. Albolkany MK, Wang Y, Li WJ, Arooj S, Chen CH, Wu NN, Wang Y, Zboril R, Fischer RA, Liu B (2020) Dual-function HKUST-1: templating and catalyzing formation of graphitic carbon nitride quantum dots under mild conditions. Angew Chem Int Ed Engl 59:21499–21504. https://doi.org/10.1002/anie.202009710

    Article  CAS  Google Scholar 

  55. Wang YF, Wang BL, Shi HZ, Zhang CH, Tao CY, Li JY (2018) Carbon nanodots in ZIF-8: synthesis, tunable luminescence and temperature sensing. Inorg Chem Front 5:2739–2745. https://doi.org/10.1039/c8qi00637g

    Article  CAS  Google Scholar 

  56. Yan FY, Wang XL, Wang Y, Yi CH, Xu M, Xu JX (2022) Sensing performance and mechanism of carbon dots encapsulated into metal-organic frameworks. Mikrochim Acta 189:379. https://doi.org/10.1007/s00604-022-05481-5

    Article  CAS  Google Scholar 

  57. Wang XY, Yu JL, Ji W, Arabi M, Fu LW, Li BW, Chen LX (2021) On–off–on fluorescent chemosensors based on N/P-codoped carbon dots for detection of microcystin-LR. ACS Appl Nano Mater 4:6852–6860. https://doi.org/10.1021/acsanm.1c00921

    Article  CAS  Google Scholar 

  58. Yang JM, Hu XW, Liu YX, Zhang W (2019) Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous Mesoporous Mater 274:149–154. https://doi.org/10.1016/j.micromeso.2018.07.042

    Article  CAS  Google Scholar 

  59. Chen Z, Zhang ZY, Qi J, You JM, Ma JP, Chen LX (2023) Colorimetric detection of heavy metal ions with various chromogenic materials: strategies and applications. J Hazard Mater 441:129889. https://doi.org/10.1016/j.jhazmat.2022.129889

    Article  CAS  Google Scholar 

  60. Liu PT, Hao RS, Sun WL, Lin ZY, Jing TF, Yang HZ (2022) A “bottle-around-ship” method to encapsulated carbon nitride and CdTe quantum dots in ZIF-8 as the dual emission fluorescent probe for detection of mercury (II) ion. Anal Sci 38:1305–1312. https://doi.org/10.1007/s44211-022-00159-7

    Article  Google Scholar 

  61. Wang XY, Yu SM, Wang JR, Yu JL, Arabi M, Fu L, Li BW, Li JH, Chen LX (2020) Fluorescent nanosensor designing via hybrid of carbon dots and post-imprinted polymers for the detection of ovalbumin. Talanta 211:120727. https://doi.org/10.1016/j.talanta.2020.120727

    Article  CAS  Google Scholar 

  62. Wu ZH, Yang H, Pan S, Liu H, Hu XL (2020) Fluorescence-scattering dual-signal response of carbon dots@ZIF-90 for phosphate ratiometric detection. ACS Sens 5:2211–2220. https://doi.org/10.1021/acssensors.0c00853

    Article  CAS  Google Scholar 

  63. Guo XP, Pan QW, Song XQ, Guo QY, Zhou SX, Qiu JR, Dong GP (2020) Embedding carbon dots in Eu3+-doped metal-organic framework for label-free ratiometric fluorescence detection of Fe3+ ions. J Am Ceram Soc 104:886–895. https://doi.org/10.1111/jace.17477

    Article  CAS  Google Scholar 

  64. Tao YF, Jiang YS, Huang YT, Liu JN, Zhang P, Chen XD, Fan Y, Wang L, Xu JN (2021) Carbon dots@metal-organic frameworks as dual-functional fluorescent sensors for Fe3+ ions and nitro explosives. CrystEngComm 23:4038–4049. https://doi.org/10.1039/d1ce00392e

    Article  CAS  Google Scholar 

  65. Fu JL, Zhou S, Tang SS, Wu XD, Zhao PF, Tang KL, Chen Y, Yang ZX, Zhang ZH (2022) Imparting down/up-conversion dual channels fluorescence to luminescence metal-organic frameworks by carbon dots-induced for fluorescence sensing. Talanta 242:123283. https://doi.org/10.1016/j.talanta.2022.123283

    Article  CAS  Google Scholar 

  66. Fan L, Wang YX, Li L, Zhou JG (2020) Carbon quantum dots activated metal organic frameworks for selective detection of Cu(II) and Fe(III). Colloids Surf Physicochem Eng Aspects 588:124378. https://doi.org/10.1016/j.colsurfa.2019.124378

    Article  CAS  Google Scholar 

  67. Yang J, Ruan B, Ye Q, Tsai LC, Ma N, Jiang T, Tsai FC (2022) Carbon dots-embedded zinc-based metal-organic framework as a dual-emitting platform for metal cation detection. Microporous Mesoporous Mater 331:111630. https://doi.org/10.1016/j.micromeso.2021.111630

    Article  CAS  Google Scholar 

  68. Guo H, Wang XQ, Wu N, Xu MN, Wang MY, Zhang LW, Yang W (2020) One-pot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu2+ sensing. Anal Methods 12:4058–4063. https://doi.org/10.1039/d0ay01121e

    Article  CAS  Google Scholar 

  69. Bera MK, Behera L, Mohapatra S (2021) A fluorescence turn-down-up detection of Cu2+ and pesticide quinalphos using carbon quantum dot integrated UiO-66-NH2. Colloids Surf Physicochem Eng Aspects 624:126792. https://doi.org/10.1016/j.colsurfa.2021.126792

  70. Hao J, Liu FF, Liu N, Zeng ML, Song YH, Wang L (2017) Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks. Sens Actuators B 245:641–647. https://doi.org/10.1016/j.snb.2017.02.029

    Article  CAS  Google Scholar 

  71. Wang XQ, Guo H, Wu N, Xu MN, Zhang LW, Yang W (2021) A dual-emission fluorescence sensor constructed by encapsulating double carbon dots in zeolite imidazole frameworks for sensing Pb2+. Colloids Surf Physicochem Eng Aspects 615:126218. https://doi.org/10.1016/j.colsurfa.2021.126218

    Article  CAS  Google Scholar 

  72. Xu XY, Yan B (2016) Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal-organic framework hybrids with carbon dots and Eu3+. J Mater Chem C 4:1543–1549. https://doi.org/10.1039/c5tc04002g

    Article  CAS  Google Scholar 

  73. Wang YY, He J, Zheng MD, Qin MD, Wei W (2019) Dual-emission of Eu based metal-organic frameworks hybrids with carbon dots for ratiometric fluorescent detection of Cr(VI). Talanta 191:519–525. https://doi.org/10.1016/j.talanta.2018.08.078

    Article  CAS  Google Scholar 

  74. Fu X, Lv R, Su J, Li H, Yang BY, Gu W, Liu X (2018) A dual-emission nano-rod MOF equipped with carbon dots for visual detection of doxycycline and sensitive sensing of MnO4-. RSC Adv 8:4766–4772. https://doi.org/10.1039/c7ra12252g

    Article  CAS  Google Scholar 

  75. Yang QF, Hong H, Luo YK (2020) Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline. Chem Eng J 392:123680. https://doi.org/10.1016/j.cej.2019.123680

    Article  CAS  Google Scholar 

  76. Wu JX, Yan B (2017) A dual-emission probe to detect moisture and water in organic solvents based on green-Tb3+ post-coordinated metal-organic frameworks with red carbon dots. Dalton Trans 46:7098–7105. https://doi.org/10.1039/c7dt01352c

    Article  CAS  Google Scholar 

  77. Dong YQ, Cai JH, Fang QQ, You X, Chi YW (2016) Dual-emission of lanthanide metal-organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents. Anal Chem 88:1748–1752. https://doi.org/10.1021/acs.analchem.5b03974

    Article  CAS  Google Scholar 

  78. Bao J, Mei J, Cheng X, Ren DD, Xu GH, Wei FD, Sun Y, Hu Q, Cen Y (2021) A ratiometric lanthanide-free fluorescent probe based on two-dimensional metal-organic frameworks and carbon dots for the determination of anthrax biomarker. Microchim Acta 188:84. https://doi.org/10.1007/s00604-021-04701-8

    Article  CAS  Google Scholar 

  79. Shokri R, Amjadi M (2021) A ratiometric fluorescence sensor for triticonazole based on the encapsulated boron-doped and phosphorous-doped carbon dots in the metal organic framework. Spectrochim Acta Part A 246:118951. https://doi.org/10.1016/j.saa.2020.118951

    Article  CAS  Google Scholar 

  80. Xie SQ, Li XJ, Wang LM, Zhu FW, Zhao XY, Yuan TQ, Liu Q, Chen XQ (2021) High quantum-yield carbon dots embedded metal-organic frameworks for selective and sensitive detection of dopamine. Microchem J 160:105718. https://doi.org/10.1016/j.microc.2020.105718

    Article  CAS  Google Scholar 

  81. Wu SX, Chen C, Chen JH, Li W, Sun MH, Zhuang JC, Lin JJ, Liu YL, Xu H, Zheng MT, Zhang XJ, Lei BF, Zhang HR (2022) Construction of carbon dots/metal-organic framework composite for ratiometric sensing of norfloxacin. J Mater Chem C. https://doi.org/10.1039/d2tc03414j

    Article  Google Scholar 

  82. Feng SS, Pei FB, Wu Y, Lv JJ, Hao QL, Yang TH, Tong ZY, Lei W (2021) A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochim Acta Part A 246:119004. https://doi.org/10.1016/j.saa.2020.119004

    Article  CAS  Google Scholar 

  83. Wang QH, Qi XD, Chen HY, Li JG, Yang M, Liu J, Sun K, Li ZH, Deng GW (2022) Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal-organic frameworks. Microchim Acta 189:272. https://doi.org/10.1007/s00604-022-05377-4

    Article  CAS  Google Scholar 

  84. He J, Zeller M, Hunter AD, Xu ZT (2012) White light emission and second harmonic generation from secondary group participation (SGP) in a coordination network. J Am Chem Soc 134:1553–1559. https://doi.org/10.1021/ja2073559

    Article  CAS  Google Scholar 

  85. Sun CY, Wang XL, Zhang X, Qin C, Li P, Su ZM, Zhu DX, Shan GG, Shao KZ, Wu H, Li J (2013) Efficient and tunable white-light emission of metal-organic frameworks by iridium-complex encapsulation. Nat Commun 4:2717. https://doi.org/10.1038/ncomms3717

    Article  CAS  Google Scholar 

  86. Zhao YW, Zhang FQ, Zhang XM (2016) Single component lanthanide hybrids based on metal-organic framework for near-ultraviolet white light LED. ACS Appl Mater Interfaces 8:24123–24130. https://doi.org/10.1021/acsami.6b07724

    Article  CAS  Google Scholar 

  87. Othong J, Boonmak J, Promarak V, Kielar F, Youngme S (2019) Sonochemical synthesis of carbon dots/lanthanoid mofs hybrids for white light-emitting diodes with high color rendering. ACS Appl Mater Interfaces 11:44421–44429. https://doi.org/10.1021/acsami.9b13814

    Article  CAS  Google Scholar 

  88. Han SJ, Chen XP, Hu YP, Han L (2021) Solid-state N, P-doped carbon dots conquer aggregation-caused fluorescence quenching and couple with europium metal-organic frameworks toward white light-emitting diodes. Dyes Pigm 187:109090. https://doi.org/10.1016/j.dyepig.2020.109090

    Article  CAS  Google Scholar 

  89. Lu YT, Wang S, Yu KL, Yu JL, Zhao D, Li CX (2021) Encapsulating carbon quantum dot and organic dye in multi-shell nanostructured MOFs for use in white light-emitting diode. Microporous Mesoporous Mater 319:111062. https://doi.org/10.1016/j.micromeso.2021.111062

    Article  CAS  Google Scholar 

  90. Lin JK, Tian WJ, Guan ZY, Zhang HY, Duan XG, Wang H, Sun HQ, Fang YF, Huang YP, Wang SB (2022) Functional carbon nitride materials in photo-fenton-like catalysis for environmental remediation. Adv Funct Mater 32:2201743. https://doi.org/10.1002/adfm.202201743

    Article  CAS  Google Scholar 

  91. Li L, Wang XS, Liu TF, Ye JH (2020) Titanium-based MOF materials: from crystal engineering to photocatalysis. Small Methods 4:2000486. https://doi.org/10.1002/smtd.202000486

    Article  CAS  Google Scholar 

  92. Cao SH, Zhang Y, He NN, Wang J, Chen H, Jiang F (2020) Metal-free 2D/2D heterojunction of covalent triazine-based frameworks/graphitic carbon nitride with enhanced interfacial charge separation for highly efficient photocatalytic elimination of antibiotic pollutants. J Hazard Mater 391:122204. https://doi.org/10.1016/j.jhazmat.2020.122204

    Article  CAS  Google Scholar 

  93. Sheng WB, Li W, Tan DM, Zhang PP, Zhang E, Sheremet E, Schmidt BVKJ, Feng XL, Rodriguez RD, Jordan R, Amin I (2020) Polymer brushes on graphitic carbon nitride for patterning and as a SERS active sensing layer via incorporated nanoparticles. ACS Appl Mater Interfaces 12:9797–9805. https://doi.org/10.1021/acsami.9b21984

    Article  CAS  Google Scholar 

  94. Chen HY, Yuan XZ, Jiang LB, Wang H, Zeng GJ (2022) Highly efficient As(III) removal through simultaneous oxidation and adsorption by N-CQDs modified MIL-53(Fe). Sep Purif Technol 286:120409. https://doi.org/10.1016/j.seppur.2021.120409

    Article  CAS  Google Scholar 

  95. Xu ML (2021) Synthesis and interfacial regulation of Pt@MOF composites for photocataiytic hydrogen production. Dissertation, Univ Sci Technol China.

  96. Mou QX, Wang X, Xu ZH, Zul P, Li E, Zhao PP, Liu XH, Li HB, Cheng GZ (2022) A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chin Chem Lett 33:562–566. https://doi.org/10.1016/j.cclet.2021.08.028

    Article  CAS  Google Scholar 

  97. Rehman MY, Manzoor S, Nazar N, Abid AG, Qureshi AM, Chughtai AH, Joya KS, Shah A, Ashiq MN (2021) Facile synthesis of novel carbon dots@metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. J Alloys Compd 856:158038. https://doi.org/10.1016/j.jallcom.2020.158038

    Article  CAS  Google Scholar 

  98. Wei D, Tang W, Gan YD, Xu XQ (2020) Graphene quantum dot-sensitized Zn-MOFs for efficient visible-light-driven carbon dioxide reduction. Catal Sci Technol 10:5666–5676. https://doi.org/10.1039/d0cy00842g

    Article  CAS  Google Scholar 

  99. Sonowal K, Nandal N, Basyach P, Kalita L, Jain SL, Saikia L (2022) Photocatalytic reduction of CO2 to methanol using Zr(IV)-based MOF composite with g-C3N4 quantum dots under visible light irradiation. J CO2 Util 57:101905. https://doi.org/10.1016/j.jcou.2022.101905

  100. Zhu GL, Feng S, Feng SS, Zhang ZH (2019) One-pot synthesis of C-dots UiO-66-NH2 with enhanced photocatalytic activity for degrading ketoprofen. Mater Lett 246:36–39. https://doi.org/10.1016/j.matlet.2019.02.105

    Article  CAS  Google Scholar 

  101. Si YH, Li XR, Yang G, Mie XL, Ge LB (2020) Fabrication of a novel core-shell CQDs@ZIF-8 composite with enhanced photocatalytic activity. J Mater Sci 55:13049–13061. https://doi.org/10.1007/s10853-020-04909-8

    Article  CAS  Google Scholar 

  102. Song DQ, Guo HZ, Huang K, Zhang HY, Chen J, Wang L, Lian C, Wang Y (2022) Carboxylated carbon quantum dot-induced binary metal-organic framework nanosheet synthesis to boost the electrocatalytic performance. Mater Today 54:42–51. https://doi.org/10.1016/j.mattod.2022.02.011

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Foundational Research Project of Shanxi Province (20210302123164), the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-TD012, 2022SX-TD012), the National Natural Science Foundation of China (51972221), and the Shanxi Scholarship Council of China (2020–051, HGKY2019027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhen Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jin, X., Yan, L. et al. Recent research progress in CDs@MOFs composites: fabrication, property modulation, and application. Microchim Acta 190, 28 (2023). https://doi.org/10.1007/s00604-022-05597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05597-8

Keywords

Navigation