Skip to main content
Log in

Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fentanyl is a powerful synthetic opioid used to treat severe pain. New administration routes toward its illegal consumption for recreational purposes pose a growing threat to public health, either due to misuse or abuse of this substance. As a result, the rapid qualitative and quantitative determination of fentanyl in biofluids is of great interest. A novel enzymatic biosensor based on adsorptive-stripping cyclic voltammetry is proposed as a cost-effective, reliable, and efficient device for fentanyl determination in urine samples. Disposable screen-printed carbon electrodes modified with multi-walled carbon nanotubes and cytochrome c were used to develop the testing platform. The electrochemical behavior of fentanyl exhibited a well-defined anodic wave around 0.66 V vs. pseudo reference electrode. The experimental conditions were optimized to obtain the best analytical response, and linear regression analysis of increasing concentration standards was applied to estimate the performance parameters. The results suggest a simple method with a wide linearity range, high sensitivity, low limits of detection (0.086 μg/mL) and quantification, and satisfactory precision (2.9% RSD). The feasibility and applicability of the voltammetric approach were assessed by fentanyl-spiked urine samples by standard additions calibration curves in two levels of enrichment with an accuracy of 92% and 100%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), 2001 Annual report on the state of the drugs problem in the European Union, (2001) 1–6. https://www.emcdda.europa.eu/system/files/publications/201/sel2001_3en_69551.pdf. Accessed 1 May 2022

  2. United Nations office on Drugs and Crime (UNODC), World Drug Report 2021, 2021. www.unodc.org/unodc/en/data-and-analysis/wdr2021.html. Accessed 3 May 2022

  3. Friesen EL, Kurdyak PA, Gomes T, Kolla G, Leece P, Zhu L, Toombs E, O’Neill B, Stall NM, Jüni P, Mushquash CJ, Mah L (2021) The impact of the COVID-19 pandemic on opioid-related harm in Ontario, https://doi.org/10.47326/ocsat.2021.02.42.1.0

  4. Pardo B, Reuter P (2020) Enforcement strategies for fentanyl and other synthetic opioids. Foreign Policy and Global Economy & Development Programs. Brookings

  5. The US Centers for Disease Control and Prevention (CDC), (2022). https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm (accessed May 3, 2022).

  6. Manirakiza A, Irakoze L, Manirakiza S, Bizimana P (2020) Efficacy and safety of fentanyl compared with morphine among adult patients with cancer: a meta-analysis, East African. Heal. Res J. 4:8–16. https://doi.org/10.24248/eahrj.v4i1.617

    Article  Google Scholar 

  7. Wolff RF, Aune D, Truyers C, Hernandez AV, Misso K, Riemsma R, Kleijnen J (2012) Systematic review of efficacy and safety of buprenorphine versus fentanyl or morphine in patients with chronic moderate to severe pain. Curr Med Res Opin 28:833–845. https://doi.org/10.1185/03007995.2012.678938

    Article  CAS  Google Scholar 

  8. National Institute on Drug Abuse, Fentanyl DrugFacts, (2021) 1–7. https://nida.nih.gov/publications/drugfacts/fentanyl. Accessed 1 May 2022

  9. United Nations Office on Drugs and Crime (UNODC), Global smart update: fentanyl and its analogues - 50 years on, (2017) 3–12. https://www.unodc.org/documents/scientific/Global_SMART_Update_17_web.pdf. Accessed 4 May 2022

  10. United Nations office on Drugs and Crime (UNODC), Global smart update: understanding the global opioid crisis, 21 (2019). https://www.unodc.org/documents/scientific/Global_SMART_21_web_new.pdf. Accessed 4 May 2022

  11. United Nations office on Drugs and Crime (UNODC) (2018) Recommended methods for the identification and analysis of fentanyl and its analogues in biological specimens, https://doi.org/10.18356/aca7aca5-en

  12. Strano-Rossi S, Álvarez I, Tabernero MJ, Cabarcos P, Fernández P, Bermejo AM (2011) Determination of fentanyl, metabolite and analogs in urine by GC/MS. J Appl Toxicol 31:649–654. https://doi.org/10.1002/jat.1613

    Article  CAS  Google Scholar 

  13. Mochizuki A, Nakazawa H, Adachi N, Takekawa K, Shojo H (2018) Identification and quantification of mepirapim and acetyl fentanyl in authentic human whole blood and urine samples by GC–MS/MS and LC–MS/MS. Forensic Toxicol 36:81–87. https://doi.org/10.1007/s11419-017-0384-7

    Article  CAS  Google Scholar 

  14. Cummings OT, Enders JR, McIntire GL, Backer R, Poklis A (2016) Fentanyl-norfentanyl concentrations during transdermal patch application: LC-MS-MS urine analysis. J Anal Toxicol 40:595–600. https://doi.org/10.1093/jat/bkw067

    Article  CAS  Google Scholar 

  15. Palamar JJ, Salomone A, Barratt MJ (2020) Drug checking to detect fentanyl and new psychoactive substances. Curr Opin Psychiatry 33:301–305. https://doi.org/10.1097/YCO.0000000000000607

    Article  Google Scholar 

  16. Vincenti F, Montesano C, Gobbi S, Sergi M, Curini R, Compagnone D (2021) Quantitative analysis of fentanyl, several analogues and metabolites in urine by parallel artificial liquid membrane extraction and liquid chromatography tandem mass spectrometry analysis. J Chromatogr Open 1:100006. https://doi.org/10.1016/j.jcoa.2021.100006

    Article  Google Scholar 

  17. Jornet-Martínez N, Moliner-Martínez Y, Molins-Legua C, Campíns-Falcó P (2017) Trends for the development of in situ analysis devices, Encycl. Anal Chem. 1–23. https://doi.org/10.1002/9780470027318.a9593

  18. Shaw L, Dennany L (2017) Applications of electrochemical sensors: forensic drug analysis. Curr Opin Electrochem 3:23–28. https://doi.org/10.1016/j.coelec.2017.05.001

    Article  CAS  Google Scholar 

  19. Anzar N, Suleman S, Parvez S, Narang J (2022) A review on Illicit drugs and biosensing advances for its rapid detection. Process Biochem 113:113–124. https://doi.org/10.1016/j.procbio.2021.12.021

    Article  CAS  Google Scholar 

  20. González-Hernández J, Alvarado-Gámez AL, Arroyo-Mora LE, Barquero-Quirós M (2021) Electrochemical determination of novel psychoactive substances by differential pulse voltammetry using a microcell for boron-doped diamond electrode and screen-printed electrodes based on carbon and platinum. J Electroanal Chem 882:114994. https://doi.org/10.1016/j.jelechem.2021.114994

    Article  CAS  Google Scholar 

  21. González-Hernández J, Ott CE, Arcos-Martínez MJ, Colina Á, Heras A, Alvarado-Gámez AL, Urcuyo R, Arroyo-Mora LE (2022) Rapid determination of the ‘Legal Highs’ 4-MMC and 4-MEC by spectroelectrochemistry: simultaneous cyclic voltammetry and in situ surface-enhanced raman spectroscopy, Sensors . 22. https://doi.org/10.3390/s22010295

  22. Cho IH, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 24:1–12. https://doi.org/10.1186/s40824-019-0181-y

    Article  CAS  Google Scholar 

  23. Viswanathan S, Rani C, Vijay Anand A, Ho JA (2009) Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens Bioelectron 24:1984–1989. https://doi.org/10.1016/j.bios.2008.10.006

    Article  CAS  Google Scholar 

  24. Choińska MK, Šestáková I, Hrdlička V, Skopalová J, Langmaier J, Maier V, Navrátil T (2022) Electroanalysis of fentanyl and its new analogs: a review, Biosensors. 12. https://doi.org/10.3390/bios12010026

  25. Naghian E, MarziKhosrowshahi E, Sohouli E, Ahmadi F, Rahimi-Nasrabadi M, Safarifard V (2020) A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn(ii)-MOF, New. J. Chem. 44:9271–9277. https://doi.org/10.1039/d0nj01322f

    Article  CAS  Google Scholar 

  26. MostafaNajafi E, Sohouli F. Mousavi (2020) An electrochemical sensor for fentanyl detection based on multi-walled carbon nanotubes as electrocatalyst and the electrooxidation mechanism. J Anal Chem. 75:1209–1217. https://doi.org/10.1134/S1061934820090130

    Article  CAS  Google Scholar 

  27. Glasscott MW, Vannoy KJ, Iresh Fernando PUA, Kosgei GK, Moores LC, Dick JE (2020) Electrochemical sensors for the detection of fentanyl and its analogs: foundations and recent advances. TrAC - Trends Anal. Chem. 132:116037. https://doi.org/10.1016/j.trac.2020.116037

    Article  CAS  Google Scholar 

  28. Mishra RK, Goud KY, Li Z, Moonla C, Mohamed MA, Tehrani F, Teymourian H, Wang J (2020) Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J Am Chem Soc 142:5991–5995. https://doi.org/10.1021/jacs.0c01883

    Article  CAS  Google Scholar 

  29. Ott CE, Cunha-Silva H, Kuberski SL, Cox JA, Arcos-Martínez MJ, Arroyo-Mora LE (2020) Electrochemical detection of fentanyl with screen-printed carbon electrodes using square-wave adsorptive stripping voltammetry for forensic applications. J Electroanal Chem 873:114425. https://doi.org/10.1016/j.jelechem.2020.114425

    Article  CAS  Google Scholar 

  30. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  Google Scholar 

  31. Asturias-Arribas L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2011) CYP450 biosensors based on screen-printed carbon electrodes for the determination of cocaine. Anal Chim Acta 685:15–20. https://doi.org/10.1016/j.aca.2010.11.006

    Article  CAS  Google Scholar 

  32. Asturias-Arribas L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2013) Electrochemical determination of cocaine using screen-printed cytochrome P450 2B4 based biosensors. Talanta 105:131–134. https://doi.org/10.1016/j.talanta.2012.11.078

    Article  CAS  Google Scholar 

  33. Ahmed SR, Chand R, Kumar S, Mittal N, Srinivasan S, Rajabzadeh AR (2020) Recent biosensing advances in the rapid detection of illicit drugs. TrAC - Trends Anal Chem 131:116006. https://doi.org/10.1016/j.trac.2020.116006

    Article  CAS  Google Scholar 

  34. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433. https://doi.org/10.1038/sj.cdd.4401950

    Article  CAS  Google Scholar 

  35. Jain R, Kumar S, Chhabra R, Agarwal MC, Kumar R (2015) Analysis of the pH-dependent stability and millisecond folding kinetics of horse cytochrome c. Arch Biochem Biophys 585:52–63. https://doi.org/10.1016/j.abb.2015.09.011

    Article  CAS  Google Scholar 

  36. Murgida DH, Hildebrandt P (2001) Proton-coupled electron transfer of cytochrome c. J Am Chem Soc 123:4062–4068. https://doi.org/10.1021/ja004165j

    Article  CAS  Google Scholar 

  37. Aghamiri ZS, Mohsennia M, Rafiee-Pour HA (2018) Immobilization of cytochrome c and its application as electrochemical biosensors. Talanta 176:195–207. https://doi.org/10.1016/j.talanta.2017.08.039

    Article  CAS  Google Scholar 

  38. Eguílaz M, Venegas CJ, Gutiérrez A, Rivas GA, Bollo S (2016) Carbon nanotubes non-covalently functionalized with cytochrome c: a new bioanalytical platform for building bienzymatic biosensors. Microchem J 128:161–165. https://doi.org/10.1016/j.microc.2016.04.018

    Article  CAS  Google Scholar 

  39. Shie JW, Umasankar Y, Chen SM (2008) Electroanalytical properties of cytochrome c by direct electrochemistry on multi-walled carbon nanotubes incorporated with DNA biocomposite film. Talanta 74:1659–1669. https://doi.org/10.1016/j.talanta.2007.10.034

    Article  CAS  Google Scholar 

  40. Ba Hashwan SS, Fatin MF, Ruslinda AR, MdArshad MK, Hashim U, Ayub RM (2015) Functionalization of multi wall carbon nanotubes using nitric acid oxidation. Appl Mech Mater. 754–755:1156–1160. https://doi.org/10.4028/www.scientific.net/amm.754-755.1156

    Article  Google Scholar 

  41. Walt DR, Agayn VI (1994) The chemistry of enzyme and protein immobilization with glutaraldehyde, TrAC -. Trends Anal Chem 13:425–430. https://doi.org/10.1016/0165-9936(94)85023-2

    Article  CAS  Google Scholar 

  42. Imai M, Saio T, Kumeta H, Uchida T, Inagaki F, Ishimori K (2016) Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c. Biochem Biophys Res Commun 469:978–984. https://doi.org/10.1016/j.bbrc.2015.12.079

    Article  CAS  Google Scholar 

  43. Brenes JP, Arroyo-Mora LE, Barquero-Quirós M (2022) Enzymatic inhibitive determination of AB-Fubinaca and AB-Pinaca on screen printed carbon tetratiofulvalene electrodes modified with nanoparticles and carbon nanotubes. Sens Bio-Sensing Res 38:100515. https://doi.org/10.1016/j.sbsr.2022.100515

    Article  Google Scholar 

  44. Wester N, Mynttinen E, Etula J, Lilius T, Kalso E, Mikladal BF, Zhang Q, Jiang H, Sainio S, Nordlund D, Kauppinen EI, Laurila T, Koskinen J (2020) Single-walled carbon nanotube network electrodes for the detection of fentanyl citrate. ACS Appl Nano Mater 3:1203–1212. https://doi.org/10.1021/acsanm.9b01951

    Article  CAS  Google Scholar 

  45. Thurlkill RL, Cross DA, Scholtz JM, Pace CN (2005) pKa of fentanyl varies with temperature: implications for acid-base management during extremes of body temperature. J Cardiothorac Vasc Anesth 19:759–762. https://doi.org/10.1053/j.jvca.2004.11.039

    Article  CAS  Google Scholar 

  46. Coletta M, Costa H, De Sanctis G, Neri F, Smulevich G, Turner DL, Santos H (1997) pH dependence of structural and functional properties of oxidized cytochrome c’’ from Methylophilus methylotrophus. J Biol Chem 272:24800–24804. https://doi.org/10.1074/jbc.272.40.24800

    Article  CAS  Google Scholar 

  47. Segal MS, Beem E (2001) Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol - Cell Physiol 281:1196–1204. https://doi.org/10.1152/ajpcell.2001.281.4.c1196

    Article  Google Scholar 

  48. Smith ET (2006) Examination of n = 2 reaction mechanisms that reproduce pH-dependent reduction potentials. Anal Chim Acta 572:259–264. https://doi.org/10.1016/j.aca.2006.05.025

    Article  CAS  Google Scholar 

  49. Hegde RN, Hosamani RR, Nandibewoor ST (2009) Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids Surfaces B Biointerfaces 72:259–265. https://doi.org/10.1016/j.colsurfb.2009.04.013

    Article  CAS  Google Scholar 

  50. Garrido JMPJ, Delerue-Matos C, Borges F, Macedo TRA, Oliveira-Brett AM (2004) Voltammetric oxidation of drugs of abuse III. Heroin and metabolites, Electroanalysis 16:1497–1502. https://doi.org/10.1002/elan.200302975

    Article  CAS  Google Scholar 

  51. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  52. Smith HS (2009) Opioid metabolism. Mayo Clin Proc 84:613–624. https://doi.org/10.4065/84.7.613

    Article  CAS  Google Scholar 

  53. Kanamori T, Togawa-Iwata Y, Segawa H, Yamamuro T, Kuwayama K, Tsujikawa K, Inoue H (2018) Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl. Forensic Toxicol 36:467–475. https://doi.org/10.1007/s11419-018-0425-x

    Article  CAS  Google Scholar 

  54. Holmquist GL (2009) Opioid metabolism and effects of cytochrome P450. Pain Med 10:20–29. https://doi.org/10.1111/j.1526-4637.2009.00596.x

    Article  Google Scholar 

  55. Overholser BR, Foster DR (2011) Opioid pharmacokinetic drug-drug interactions, Am J Manag Care. 17 Suppl 1: S276—87. http://europepmc.org/abstract/MED/21999760. Accessed 10 May 2022

  56. Nageswara Rao Tentu (2018) Validation of analytical methods, in: IntechOpen, Rijeka, p. Ch. 7. https://doi.org/10.5772/intechopen.72087

  57. Goodchild SA, Hubble LJ, Mishra RK, Li Z, Goud KY, Barfidokht A, Shah R, Bagot KS, McIntosh AJS, Wang J (2019) Ionic liquid-modified disposable electrochemical sensor strip for analysis of fentanyl. Anal Chem 91:3747–3753. https://doi.org/10.1021/acs.analchem.9b00176

    Article  CAS  Google Scholar 

  58. Barfidokht A, Mishra RK, Seenivasan R, Liu S, Hubble LJ, Wang J, Hall DA (2019) Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors Actuators, B Chem 296:126422. https://doi.org/10.1016/j.snb.2019.04.053

    Article  CAS  Google Scholar 

  59. Sohouli E, Keihan AH, Shahdost-fard F, Naghian E, Plonska-Brzezinska ME, Rahimi-Nasrabadi M, Ahmadi F (2020) A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Mater Sci Eng C 110:110684. https://doi.org/10.1016/j.msec.2020.110684

    Article  CAS  Google Scholar 

  60. Mishra RK, Krishnakumar A, Zareei A, Heredia-Rivera U, Rahimi R (2022) Electrochemical sensor for rapid detection of fentanyl using laser-induced porous carbon-electrodes. Microchim Acta. 189. https://doi.org/10.1007/s00604-022-05299-1

  61. Valeriy Z, Tregubenko P (2019) Using over-the-counter and other prescription medications to potentiate opiates in the USA: literature review. Medical And Public Health Aspects Of OTC Medication Misuse. J Alcohol Drug Abus Subst Depend. 5:1–15. https://doi.org/10.24966/adsd-9594/100012

    Article  Google Scholar 

  62. Fiorentin TR, Krotulski AJ, Martin DM, Browne T, Triplett J, Conti T, Logan BK (2019) Detection of cutting agents in drug-positive seized exhibits within the United States. J Forensic Sci 64:888–896. https://doi.org/10.1111/1556-4029.13968

    Article  CAS  Google Scholar 

  63. Żubrycka A, Kwaśnica A, Haczkiewicz M, Sipa K, Rudnicki K, Skrzypek S, Poltorak L (2022) Illicit drugs street samples and their cutting agents. the result of the GC-MS based profiling define the guidelines for sensors development, Talanta. 237. https://doi.org/10.1016/j.talanta.2021.122904

  64. Dussy FE, Hangartner S, Hamberg C, Berchtold C, Scherer U, Schlotterbeck G, Wyler D, Briellmann TA (2016) An acute ocfentanil fatality: a case report with postmortem concentrations. J Anal Toxicol 40:761–766. https://doi.org/10.1093/jat/bkw096

    Article  CAS  Google Scholar 

  65. Fort C, Curtis B, Nichols C, Niblo C (2016) Acetyl fentanyl toxicity: two case reports. J Anal Toxicol 40:754–757. https://doi.org/10.1093/jat/bkw068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. González-Hernández would like to thank CELEQ and Sistema de Estudios de Posgrado de la Universidad de Costa Rica for supporting and financing the internship at Universidad de Burgos and J. García for digital images processing.

Funding

The work was funded by Vicerrectoría de Investigación de la Universidad de Costa Rica (project N° 804-C2-070) and CELEQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerson González-Hernández.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 778 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Hernández, J., Moya-Alvarado, G., Alvarado-Gámez, A.L. et al. Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes. Microchim Acta 189, 483 (2022). https://doi.org/10.1007/s00604-022-05578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05578-x

Keywords

Navigation