Skip to main content
Log in

Electrochemical fabrication of Co(OH)2 nanoparticles decorated carbon cloth for non-enzymatic glucose and uric acid detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cobalt hydroxide nanoparticles (Co(OH)2 NPs) were uniformly deposited on flexible carbon cloth substrate (Co(OH)2@CC) rapidly by a facile one-step electrodeposition, which can act as an enzyme-free glucose and uric acid sensor in an alkaline electrolyte. Compositional and morphological characterization were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), which confirmed the deposited nanospheres were Co(OH)2 nanoparticles (NPs). The electrochemical oxidation of glucose and uric acid at Co(OH)2@CC electrode was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry methods. The results revealed a remarkable electrocatalytic activity toward the single and simultaneous determination of glucose and uric acid at about 0.6 V and 0.3 V (vs. Ag/AgCl), respectively, which is attributed to a noticeable synergy effect between Co(OH)2 NPs and CC with good repeatability, satisfactory reproducibility, considerable long-term stability, superior selectivity, outstanding sensitivity, and wide linear detection range from 1 uM to 2 mM and 25 nM to 1.5 uM for glucose and UA, respectively. The detection limits were 0.36 nM for UA and 0.24 μM for glucose (S/N = 3). Finally, the Co(OH)2@CC electrode was utilized for glucose and uric acid determination in human blood samples and satisfying results were obtained. The relative standard derivations (RSDs) for glucose and UA were in the range 6 to 14% and 0 to 3%, respectively. The recovery ranges for glucose an UA were 97 to 103% and 95 and 101%, respectively. These features make the novel Co(OH)2@CC sensor developed by a low-cost, efficient, and eco-friendly preparation method a potentially practical candidate for application to biosensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao MG, Shang JH, Qu HY, Gao RJ, Li H, Chen SG (2020) Fabrication of the Ni/ZnO/BiOI foam for the improved electrochemical biosensing performance to glucose. Anal Chim Acta 1095:93–98. https://doi.org/10.1016/j.aca.2019.10.033

    Article  CAS  PubMed  Google Scholar 

  2. Liu SL, Zeng W, Li YQ (2020) Synthesis of ZnCo2O4 microrods grown on nickel foam for non-enzymatic glucose sensing. Mater Lett 259:126820. https://doi.org/10.1016/j.matlet.2019.126820

    Article  CAS  Google Scholar 

  3. Hazhir T, Abbas B, Joseph W (2020) Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev 49(21):7671–7709. https://doi.org/10.1039/D0CS00304B

    Article  Google Scholar 

  4. Vasiliou F, Plessas AK, Economou A, Thomaidis N, Papaefstathiou GS, Kokkinos C (2022) Graphite paste sensor modified with a Cu(II)-complex for the enzyme-free simultaneous voltammetric determination of glucose and uric acid in sweat. J Electroanal Chem 917:116393. https://doi.org/10.1016/j.jelechem.2022.116393

    Article  CAS  Google Scholar 

  5. Zhou ZP, Shu T, Sun YF, Si HX, Peng PW, Su L, Zhang XJ (2021) Luminescent wearable biosensors based on gold nanocluster networks for “turn-on” detection of uric acid, glucose and alcohol in sweat. Biosens Bioelectron 192:113530. https://doi.org/10.1016/j.bios.2021.113530

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad R, Tripathy N, Ahn MS, Hahn YB (2017) Solution process synthesis of high aspect ratio ZnO nanorods on electrode surface for sensitive electrochemical detection of uric acid. Sci Rep 7:46475. https://doi.org/10.1038/srep46475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang S, Yang EL, Yao JD, Chu X, Liu Y, Zhang Y, Xiao Q (2019) Nitrogen, cobalt Co-doped fluorescent magnetic carbon dots as ratiometric fluorescent probes for cholesterol and uric acid in human blood serum. ACS Omega 4(5):9333–9342. https://doi.org/10.1021/acsomega.9b00874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balasubramanian P, Annalakshmi M, Chen SM, Chen TW (2019) Ultrasensitive non-enzymatic electrochemical sensing of glucose in noninvasive samples using interconnected nanosheets-like NiMnO3 as a promising electrocatalyst. Sens Actuators B Chem 299:126974. https://doi.org/10.1016/j.snb.2019.126974

    Article  CAS  Google Scholar 

  9. Asif M, Aziz A, Ashraf G, Wang ZY, Wang JL, Azeem M, Chen XD, Xiao F, Liu HF (2018) Facet-inspired core-shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl Mater Interfaces 10(43):36675–36685. https://doi.org/10.1021/acsami.8b12186

    Article  CAS  PubMed  Google Scholar 

  10. Asif M, Wang HT, Dong S, Aziz A, Zhang GA, Xiao F, Liu HF (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. Sens Actuators B Chem 239:243–252. https://doi.org/10.1016/j.snb.2016.08.010

    Article  CAS  Google Scholar 

  11. Aziz A, Asif M, Azeem M, Ashraf G, Wang ZY, Xiao F, Liu HF (2019) Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 1047:197–207. https://doi.org/10.1016/j.aca.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  12. Asif M, Aziz A, Wang HT, Wang ZY, Wang W, Ajmal M, Xiao F, Chen XD, Liu HF (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Mikrochim Acta 186(2):61. https://doi.org/10.1007/s00604-018-3158-y

    Article  CAS  PubMed  Google Scholar 

  13. Wu MY, Zhu JW, Ren YF, Yang N, Hong Y, Wang WJ, Huang W, Si WL, Dong XC (2019) NH2-GQDs-doped nickel-cobalt oxide deposited on carbon cloth for nonenzymatic detection of glucose. Adv Mater Interfaces 7(1):1901578. https://doi.org/10.1002/admi.201901578

    Article  CAS  Google Scholar 

  14. Gupta J, Arya S, Verma S, Singh A, Sharma A, Singh B, Prerna Sharma R (2019) Performance of template-assisted electrodeposited Copper/Cobalt bilayered nanowires as an efficient glucose and uric acid senor. Mater Chem Phys 238:121969. https://doi.org/10.1016/j.matchemphys.2019.121969

    Article  CAS  Google Scholar 

  15. Asif M, Aziz A, Wang ZY, Ashraf G, Wang JL, Luo HB, Chen XD, Xiao F, Liu HF (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91(6):3912–3920. https://doi.org/10.1021/acs.analchem.8b04685

    Article  CAS  PubMed  Google Scholar 

  16. Aziz A, Asif M, Ashraf G, Iftikhar T, Hu JL, Xiao F, Wang SQ (2022) Boosting electrocatalytic activity of carbon fiber@fusiform-like copper-nickel LDHs: sensing of nitrate as biomarker for NOB detection. J Hazard Mater 422:126907. https://doi.org/10.1016/j.jhazmat.2021.126907

    Article  CAS  PubMed  Google Scholar 

  17. Javad T, Sayedeh Fatemeh NA, Mojtaba S (2018) A new bifunctional nanostructure based on two-dimensional nanolayered of Co(OH)2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: impedimetric and amperometric detection. Anal Chim Acta 1034:63–73. https://doi.org/10.1016/j.aca.2018.06.052

    Article  CAS  Google Scholar 

  18. Wang Q, Chen YL, Zhu RX, Luo MF, Zou ZR, Yu HM, Jiang X, Xiong XL (2020) One-step synthesis of Co(OH)F nanoflower based on micro-plasma: as an effective non-enzymatic glucose sensor. Sens Actuators B Chem 304:127282. https://doi.org/10.1016/j.snb.2019.127282

    Article  CAS  Google Scholar 

  19. Liu TT, Li M, Dong P, Zhang YJ, Guo LP (2018) Design and facile synthesis of mesoporous cobalt nitride nanosheets modified by pyrolytic carbon for the nonenzymatic glucose detection. Sens Actuators B Chem 255:1983–1994. https://doi.org/10.1016/j.snb.2017.08.218

    Article  CAS  Google Scholar 

  20. Iman S, Umakant P, Atiye P, Nanasaheb MS, Seongil I, Seong CJ (2016) Enhanced non-enzymatic amperometric sensing of glucose using Co(OH)2 nanorods deposited on a three dimensional graphene network as an electrode material. Microchim Acta 183(8):2473–2479. https://doi.org/10.1007/s00604-016-1890-8

    Article  CAS  Google Scholar 

  21. Asif M, Aziz A, Ashraf G, Iftikhar T, Sun YM, Xiao F, Liu HF (2022) Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues. Chem Eng J 427:131398. https://doi.org/10.1016/j.cej.2021.131398

    Article  CAS  Google Scholar 

  22. Litkohi HR, Bahari A, Ojani R (2017) Synthesis of Pt-Ni-Fe/CNT/CP nanocomposite as an electrocatalytic electrode for PEM fuel cell cathode. J Nanoparticle Res 19(8):278. https://doi.org/10.1007/s11051-017-3969-5

    Article  CAS  Google Scholar 

  23. Zhang LJ, Wang N, Cao PF, Lin M, Xu L, Ma HY (2020) Electrochemical non-enzymatic glucose sensor using ionic liquid incorporated cobalt-based metal-organic framework. Microchem J 159:105343. https://doi.org/10.1016/j.microc.2020.105343

    Article  CAS  Google Scholar 

  24. Pak M, Moshaii A, Siampour H, Abbasian S, Nikkhah M (2020) Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose. Mikrochim Acta 187(5):276. https://doi.org/10.1007/s00604-020-04246-2

    Article  CAS  PubMed  Google Scholar 

  25. Rios-Reyes CH, Granados-Neri M, Mendoza-Huizar LH (2009) Kinetic study of the cobalt electrodeposition onto glassy carbon electrode from ammonium sulfate solutions. Quim Nova 32(9):2382–2386. https://doi.org/10.1590/s0100-40422009000900028

    Article  CAS  Google Scholar 

  26. Hu FX, Hu T, Chen SL, Wang DP, Rao QH, Liu YH, Dai FY, Guo CX, Yang HB, Li CM (2020) Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nanomicro Lett 13(1):7. https://doi.org/10.1007/s40820-020-00536-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, Kim E, Park J, Kim H (2015) Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron 63:325–330. https://doi.org/10.1016/j.bios.2014.07.059

    Article  CAS  PubMed  Google Scholar 

  28. Asif M, Liu HW, Aziz A, Wang HT, Wang ZY, Ajmal M, Xiao F, Liu HF (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359. https://doi.org/10.1016/j.bios.2017.05.057

    Article  CAS  PubMed  Google Scholar 

  29. Duan XX, Liu KL, Xu Y, Yuan MT, Gao T, Wang J (2019) Nonenzymatic electrochemical glucose biosensor constructed by NiCo2O4@Ppy nanowires on nickel foam substrate. Sens Actuators B Chem 292:121–128. https://doi.org/10.1016/j.snb.2019.04.107

    Article  CAS  Google Scholar 

  30. Hoan NTV, Minh NN, Trang NTH, Thuy LT, Van Hoang C, Mau TX, Vu HXA, Thu PTK, Phong NH, Khieu DQ (2020) Simultaneous voltammetric determination of uric acid, xanthine, and hypoxanthine using CoFe2O4/reduced graphene oxide-modified electrode. J Nanomater 2020:1–15. https://doi.org/10.1155/2020/9797509

    Article  CAS  Google Scholar 

  31. Abu Zahed M, Barman SC, Toyabur RM, Sharifuzzaman M, Xuan X, Nah J, Park JY (2019) Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid. J Electrochem Soc 166(6):304–311. https://doi.org/10.1149/2.0131906jes

    Article  CAS  Google Scholar 

  32. Arsalan M, Awais A, Qiao XJ, Sheng QL, Zheng JB (2020) Preparation and comparison of colloid based Ni50Co50(OH)2/BOX electrocatalyst for catalysis and high performance nonenzymatic glucose sensor. Microchem J 159:105486. https://doi.org/10.1016/j.microc.2020.105486

    Article  CAS  Google Scholar 

  33. Amin KM, Muench F, Kunz U, Ensinger W (2021) 3D NiCo-Layered double Hydroxide@Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing. J Colloid Interface Sci 591:384–395. https://doi.org/10.1016/j.jcis.2021.02.023

    Article  CAS  PubMed  Google Scholar 

  34. Setoudeh N, Jahani S, Kazemipour M, Foroughi MM, Nadiki HH (2020) Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: investigation of kinetic parameters of surface electrode and its analytical performance. J Electroanal Chem 863:114045. https://doi.org/10.1016/j.jelechem.2020.114045

    Article  CAS  Google Scholar 

  35. Manjula N, Vinothkumar V, Chen SM, Sangili A (2020) Simultaneous and sensitive detection of dopamine and uric acid based on cobalt oxide-decorated graphene oxide composite. J Mater Sci Mater Electron 31(15):12595–12607. https://doi.org/10.1007/s10854-020-03810-z

    Article  CAS  Google Scholar 

  36. Mounesh MP, Kumara NYP, Jilani BS, Mruthyunjayachari CD, Reddy KRV (2019) Synthesis and characterization of tetra-ganciclovir cobalt (II) phthalocyanine for electroanalytical applications of AA/DA/UA. Heliyon 5(7):e01946. https://doi.org/10.1016/j.heliyon.2019.e01946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu YX, Gao TT, Liang YM, Xiao D (2020) Intercalation lithium cobalt oxide for the facile fabrication of a sensitive dopamine sensor. ChemElectroChem 7(5):1193–1200. https://doi.org/10.1002/celc.202000099

    Article  CAS  Google Scholar 

  38. Liu LL, Liu L, Wang YL, Ye BC (2019) A novel electrochemical sensor based on bimetallic metal-organic framework-derived porous carbon for detection of uric acid. Talanta 199:478–484. https://doi.org/10.1016/j.talanta.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  39. Wang KD, Wu C, Wang F, Liao MH, Jiang GQ (2020) Bimetallic nanoparticles decorated hollow nanoporous carbon framework as nanozyme biosensor for highly sensitive electrochemical sensing of uric acid. Biosens Bioelectron 150:111869. https://doi.org/10.1016/j.bios.2019.111869

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank very much advanced analysis and testing center of Nanjing Forestry University for SEM measurements.

Funding

This work was financially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJA220004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8991 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Shi, F., Chen, C. et al. Electrochemical fabrication of Co(OH)2 nanoparticles decorated carbon cloth for non-enzymatic glucose and uric acid detection. Microchim Acta 189, 385 (2022). https://doi.org/10.1007/s00604-022-05437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05437-9

Keywords

Navigation