Skip to main content
Log in

Synthesis of sulfhydryl functionalized silicon quantum dots with high quantum yield for imaging of hypochlorite in cells and zebrafish

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Sulfhydryl functionalized silicon quantum dots (S-SiQDs) with a fluorescence quantum yield of 38.5% were synthesized using 3-mercaptopropyltrimethoxysilane (MPTMS) and m-phenylenediamine by a simple one-pot method. It is worth noting that by oxidizing the surface sulfhydryl groups and statically quenching, the fluorescence of S-SiQDs at 492 nm (excitation at 383 nm) can be selectively quenched by hypochlorite (ClO-) in a linear range of 0.05 to 1.8 μM with a low detection limit of 13 nM. The reaction was completed in 10 s with no interference from other ROS, metal ions, anions and reducing species. The silicon source containing sulfhydryl groups was used to synthesize silicon quantum dots for the first time, and the surface of the S-SiQDs was provided with sulfhydryl groups and reacted rapidly and sensitively with ClO-. The S-SiQDs have good photostability and biocompatibility, and can be further used for ClO- imaging in MCF-7 cells and zebrafish, showing great promise in biological imaging. The proposed assay demonstrates that 3-mercaptopropyltrimethoxysilane is a good choice to obtain a functionalized fluorescent nanoprobe for redox species.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu H, Pang LF, Wei N, Guo XF, Wang H (2021) Nucleus-targeted N-doped carbon dots via DNA-binding for imaging of hypochlorous in cells and zebrafish. Sens Actuators B Chem 333:129626. https://doi.org/10.1016/j.snb.2021.129626

    Article  CAS  Google Scholar 

  2. Breen C, Pal R, Elsegood MRJ, Teat SJ, Iza F, Wende K, Buckley BR, Butler SJ (2020) Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe. Chem Sci 11(12):3164–3170. https://doi.org/10.1039/c9sc06053g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu D, Chen L, Xu Q, Chen X, Yoon J (2019) Design principles, sensing mechanisms, and applications of highly specific fluorescent probes for HOCl/OCl(-). Acc Chem Res 52(8):2158–2168. https://doi.org/10.1021/acs.accounts.9b00307

    Article  CAS  PubMed  Google Scholar 

  4. Huo B, Du M, Shen A, Li M, Lai Y, Bai X, Gong A, Fang L, Yang Y (2019) A “light-up” fluorescent probe based on TEMPO-oxidation for the detection of ClO- and application in real samples. Sens Actuators B Chem 284:23–29. https://doi.org/10.1016/j.snb.2018.12.115

    Article  CAS  Google Scholar 

  5. Tantry IQ, Waris S, Habib S, Khan RH, Mahmood R, Ali A (2018) Hypochlorous acid induced structural and conformational modifications in human DNA: a multi-spectroscopic study. Int J Biol Macromol 106:551–558. https://doi.org/10.1016/j.ijbiomac.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  6. Lan J, Guo J, Jiang X, Chen Y, Hu Z, Que Y, Li H, Gu J, Ho RJY, Zeng R, Ding Y, Zhang T (2020) A new dicyanoisophorone-based ratiometric and colorimetric near-infrared fluorescent probe for specifically detecting hypochlorite and its bioimaging on a model of acute inflammation. Anal Chim Acta 1094:70–79. https://doi.org/10.1016/j.aca.2019.09.076

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Li Z, Wang M, Luo T, Yi L, Wang J (2019) Novel hepatocyte-targeting fluorescent probes for detection of hypochlorous acid: synergistic effect of phosphate and galactose. Sens Actuators, B Chem 279:102–110. https://doi.org/10.1016/j.snb.2018.09.123

    Article  CAS  Google Scholar 

  8. Jia M, Mi W, Guo S, Yang QZ, Jin Y, Shao N (2020) Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome-targeted imaging of hypochlorite in living cells. Talanta 216:120926. https://doi.org/10.1016/j.talanta.2020.120926

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, He Y, Ge Y, Song G, Zhou J (2021) Smartphone-assisted visual ratio-fluorescence detection of hypochlorite based on copper nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 255:119740. https://doi.org/10.1016/j.saa.2021.119740

    Article  CAS  PubMed  Google Scholar 

  10. Sun YQ, Cheng Y, Yin XB (2021) Dual-ligand lanthanide metal-organic framework for sensitive ratiometric fluorescence detection of hypochlorous acid. Anal Chem 93(7):3559–3566. https://doi.org/10.1021/acs.analchem.0c05040

    Article  CAS  PubMed  Google Scholar 

  11. Ye Y, Zhao L, Hu S, Liang A, Li Y, Zhuang Q, Tao G, Gu J (2019) Specific detection of hypochlorite based on the size-selective effect of luminophore integrated MOF-801 synthesized by a one-pot strategy. Dalton Trans 48(8):2617–2625. https://doi.org/10.1039/c8dt04692a

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Zhang P, Lu Q, Wang Y, Fu W, Tan Q, Luo W (2018) Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite. Mikrochim Acta 185(4):233. https://doi.org/10.1007/s00604-018-2768-8

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Hao J, Niu X, Qi S, Chen H, Wang K, Chen X, Yi T (2016) Seed-mediated growth approach for rapid synthesis of high-performance red-emitting CdTe quantum dots in aqueous phase and their application in detection of highly reactive oxygen species. Chem Eng J 299:201–208. https://doi.org/10.1016/j.cej.2016.04.008

    Article  CAS  Google Scholar 

  14. Yang H, Zhao Q, Wang X, Wu Y, Su Y, Wei W (2021) Facile and highly selective sensing of hypochlorous acid in aqueous solution and living cells by using as-prepared WSe2 quantum dots. Sens Actuators B Chem 337:129782. https://doi.org/10.1016/j.snb.2021.129782

    Article  CAS  Google Scholar 

  15. Zhang C, Liu M, Li T, Liu S, Chen Q, Zhang J, Zhang K (2020) One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes Pigm 180:108507. https://doi.org/10.1016/j.dyepig.2020.108507

    Article  CAS  Google Scholar 

  16. Jiao Y, Meng Y, Lu W, Gao Y, Liu Y, Gong X, Liu Y, Shuang S, Dong C (2020) Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 219:121170. https://doi.org/10.1016/j.talanta.2020.121170

    Article  CAS  PubMed  Google Scholar 

  17. Zhang P, Wang Y, Chen L, Yin Y (2017) Bimetallic nanoclusters with strong red fluorescence for sensitive detection of hypochlorite in tap water. Microchim Acta 184(10):3781–3787. https://doi.org/10.1007/s00604-017-2398-6

    Article  CAS  Google Scholar 

  18. Li LS, Jiao XY, Zhang Y, Cheng C, Huang K, Xu L (2018) Green synthesis of fluorescent carbon dots from Hongcaitai for selective detection of hypochlorite and mercuric ions and cell imaging. Sens Actuators B Chem 263:426–435. https://doi.org/10.1016/j.snb.2018.02.141

    Article  CAS  Google Scholar 

  19. Huang BH, Shen SS, Wei N, Guo XF, Wang H (2020) Fluorescence biosensor based on silicon quantum dots and 5,5’-dithiobis-(2-nitrobenzoic acid) for thiols in living cells. Spectrochim Acta A Mol Biomol Spectrosc 229:117972. https://doi.org/10.1016/j.saa.2019.117972

    Article  CAS  PubMed  Google Scholar 

  20. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336. https://doi.org/10.1038/nmat2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hemmateenejad B, Shamsipur M, Samari F, Rajabi HR (2015) Study of the interaction between human serum albumin and Mn-doped ZnS quantum dots. J Iran Chem Soc 12(10):1729–1738. https://doi.org/10.1007/s13738-015-0647-3

    Article  CAS  Google Scholar 

  22. Rajabi HR, Shamsipur M, Khosravi AA, Khani O, Yousefi MH (2013) Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochim Acta A Mol Biomol Spectrosc 107:256–262. https://doi.org/10.1016/j.saa.2013.01.045

    Article  CAS  PubMed  Google Scholar 

  23. Shamsipur M, Rajabi HR (2014) Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng C Mater Biol Appl 36:139–145. https://doi.org/10.1016/j.msec.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  24. Roushani M, Shamsipur M, Rajabi HR (2014) Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode. J Electroanal Chem 712:19–24. https://doi.org/10.1016/j.jelechem.2013.08.027

    Article  CAS  Google Scholar 

  25. Roushani M, Mavaei M, Rajabi HR (2015) Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. J Mol Catal A: Chem 409:102–109. https://doi.org/10.1016/j.molcata.2015.08.011

    Article  CAS  Google Scholar 

  26. Rajabi HR, Farsi M (2015) Quantum dot based photocatalytic decolorization as an efficient and green strategy for the removal of anionic dye. Mater Sci Semicond Process 31:478–486. https://doi.org/10.1016/j.mssp.2014.11.044

    Article  CAS  Google Scholar 

  27. Karimi F, Rajabi HR, Kavoshi L (2019) Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: study of capping agent effect on photocatalytic activity. Ultrason Sonochem 57:139–146. https://doi.org/10.1016/j.ultsonch.2019.05.019

    Article  CAS  PubMed  Google Scholar 

  28. Karimi H, Rajabi HR, Kavoshi L (2020) Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots. J Photochem Photobiol, A 397:112534. https://doi.org/10.1016/j.jphotochem.2020.112534

    Article  CAS  Google Scholar 

  29. Rajabi HR, Shahrezaei F, Farsi M (2016) Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J Mater Sci: Mater Electron 27(9):9297–9305. https://doi.org/10.1007/s10854-016-4969-4

    Article  CAS  Google Scholar 

  30. Alvand ZM, Rajabi HR, Mirzaei A, Masoumiasl A, Sadatfaraji H (2019) Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: synthesis, characterization, biological potentials and comparison study. Mater Sci Eng C Mater Biol Appl 98:535–544. https://doi.org/10.1016/j.msec.2019.01.010

    Article  CAS  Google Scholar 

  31. Zhao QQ, Zhang R, Ye DX, Zhang S, Chen H, Kong JL (2017) Ratiometric fluorescent silicon quantum dots-Ce6 complex probe for the live cell imaging of highly reactive oxygen species. ACS Appl Mater Interfaces 9(3):2052–2058. https://doi.org/10.1021/acsami.6b12047

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Hou D, Yu X (2020) Facile preparation of FITC-modified silicon nanodots for ratiometric pH sensing and imaging. Spectrochim Acta A Mol Biomol Spectrosc 234:118276. https://doi.org/10.1016/j.saa.2020.118276

    Article  CAS  PubMed  Google Scholar 

  33. Shen SS, Huang BH, Guo XF, Wang H (2019) A dual-responsive fluorescent sensor for Hg(2+) and thiols based on N-doped silicon quantum dots and its application in cell imaging. J Mater Chem B 7(44):7033–7041. https://doi.org/10.1039/c9tb01502g

    Article  CAS  PubMed  Google Scholar 

  34. Liu LR, Zhu GB, Zeng W, Lv BH, Yi YH (2019) Highly sensitive and selective “off-on” fluorescent sensing platform for ClO- in water based on silicon quantum dots coupled with nanosilver. Anal Bioanal Chem 411(8):1561–1568. https://doi.org/10.1007/s00216-019-01597-5

    Article  CAS  PubMed  Google Scholar 

  35. Taheri M, Mansour N (2019) Functionalized silicon nanoparticles as fluorescent probe for detection of hypochlorite in water. J Photochem Photobiol -Chem 382. https://doi.org/10.1016/j.jphotochem.2019.111906

  36. Li Q, He Y, Chang J, Wang L, Chen HZ, Tan YW, Wang HY, Shao ZZ (2013) Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J Am Chem Soc 135(40):14924–14927. https://doi.org/10.1021/ja407508v

    Article  CAS  PubMed  Google Scholar 

  37. Dasog M, De los Reyes GB, Titova LV, Hegmann FA, Veinot J, (2014) Size vs surface tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8(9):9636–9648. https://doi.org/10.1021/nn504109a

    Article  CAS  PubMed  Google Scholar 

  38. Zhong YL, Song B, Shen XB, Guo DX, He Y (2019) Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust pH- and photo-stability. Chem Commun 55(3):365–368. https://doi.org/10.1039/c8cc07340f

    Article  CAS  Google Scholar 

  39. Li W, Liu D, Dong D, You T (2021) Microwave-assisted synthesis of fluorescent silicon quantum dots for ratiometric sensing of Hg (II) based on the regulation of energy transfer. Talanta 226:122093. https://doi.org/10.1016/j.talanta.2021.122093

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Peng KT, Lu YZ, Li AX, Che FF, Liu YY, Xi XJ, Chu Q, Lan T, Wei Y (2018) Synthesis of fluorescent ionic liquid-functionalized silicon nanoparticles with tunable amphiphilicity and selective determination of Hg2+. J Mater Chem B 6(48):8214–8220. https://doi.org/10.1039/c8tb02109k

    Article  CAS  PubMed  Google Scholar 

  41. Zhong YL, Peng F, Bao F, Wang SY, Ji XY, Yang L, Su YY, Lee ST, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135(22):8350–8356. https://doi.org/10.1021/ja4026227

    Article  CAS  PubMed  Google Scholar 

  42. Wei N, Wei MX, Huang BH, Guo XF, Wang H (2021) One-pot facile synthesis of green-emitting fluorescent silicon quantum dots for the highly selective and sensitive detection of nitrite in food samples. Dyes and Pigments 184. https://doi.org/10.1016/j.dyepig.2020.108848

  43. Sun YC, Pang LF, Guo XF, H Wang (2022) Synthesis of metal ion-tolerant Mn-doped fluorescence silicon quantum dots with green emission and its application for selective imaging of center dot OH in living cells. Microchimica Acta 189(2). https://doi.org/10.1007/s00604-021-05082-8

  44. Na M, Zhang SP, Liu JJ, Ma SD, Han YX, Wang Y, He YX, Chen HL, Chen XG (2020) Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. J Hazard Mater 386:121956. https://doi.org/10.1016/j.jhazmat.2019.121956

    Article  CAS  PubMed  Google Scholar 

  45. Zhan YJ, Zeng YB, Li L, Luo F, Qiu B, Lin ZY, Guo LH (2019) Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sensors 4(5):1252–1260. https://doi.org/10.1021/acssensors.9b00125

    Article  CAS  PubMed  Google Scholar 

  46. Gopu CL, Krishna Shanti A, Sreenivasan K (2015) Fluorimetric detection of hypochlorite using albumin stabilized gold nanoclusters. Sens Actuators B Chem 209:798–802. https://doi.org/10.1016/j.snb.2014.12.004

    Article  CAS  Google Scholar 

  47. Malankar GS, Sakunthala A, Navalkar A, Maji SK, Raju S, Manjare ST (2021) Organoselenium-based BOPHY as a sensor for detection of hypochlorous acid in mammalian cells. Anal Chim Acta 1150:338205. https://doi.org/10.1016/j.aca.2021.338205

    Article  CAS  PubMed  Google Scholar 

  48. Liu M, Bai Y, He Y, Zhou J, Ge Y, Zhou J, Song G (2021) Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Mikrochim Acta 188(1):15. https://doi.org/10.1007/s00604-020-04668-y

    Article  CAS  PubMed  Google Scholar 

  49. Konar S, Samanta D, Mandal S, Das S, Mahto MK, Shaw M, Mandald M, Pathak A (2018) Selective and sensitive detection of cinnamaldehyde by nitrogen and sulphur co-doped carbon dots: a detailed systematic study. RSC Adv 8(74):42361–42373. https://doi.org/10.1039/c8ra09285k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ko SK, Chen X, Yoon J, Shin I (2011) Zebrafish as a good vertebrate model for molecular imaging using fluorescent probes. Chem Soc Rev 40(5):2120–2130. https://doi.org/10.1039/c0cs00118j

    Article  CAS  PubMed  Google Scholar 

  51. Pang LF, Sun YC, Guo XF, Wang H (2021) Cell membrane-targeted near-infrared carbon dots for imaging of hydrogen sulfide released through the cell membrane. Sensors Actuators B-Chem 345:130403. https://doi.org/10.1016/j.snb.2021.130403

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 32070398 and 21777126, Beijing, China).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2807 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, N., Sun, YC., Guo, XF. et al. Synthesis of sulfhydryl functionalized silicon quantum dots with high quantum yield for imaging of hypochlorite in cells and zebrafish. Microchim Acta 189, 329 (2022). https://doi.org/10.1007/s00604-022-05435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05435-x

Keywords

Navigation