Skip to main content
Log in

Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Accurate and low-cost onsite assay of residual antibiotics in food and agriculture-related matrixes (e.g., milk) is of significant importance for evaluating and controlling food pollution risk. Herein, we employed hybrid Cu-doped-g-C3N4 nanozyme to engineer smartphone-assisted onsite visual sensor for reliable and precise reporting the levels of tetracycline (TC) residues in milk through π-π stacking-triggered blocking effect. Benefiting from the synergetic effects of Cu2+ and g-C3N4 nanosheet, Cu-doped-g-C3N4 nanocomposite exhibited an improved peroxidase-like activity, which could effectively catalyze H2O2 to oxidate colorless TMB into steel-blue product oxTMB. Interestingly, owing to the blocking effect caused by the π-π stacking interaction between TC tetraphenyl skeleton and Cu-doped-g-C3N4 nanozyme, the affinity of Cu-doped-g-C3N4 nanocomposite toward the catalytic substrates was remarkably blocked, resulting in a TC concentration-dependent fading of solution color. Using smartphone-assisted detection a simple, low-cost, reliable, and sensitive portable colorimetric sensor-based nanozyme for onsite visual monitoring the residual TC in milk was successfully developed with a detection limit of 86.27 nM. Of particular mention is that this detection limit is comparable to most other reported colorimetric methods and below most official allowable residue thresholds in milk matrixes. This work gave a novel insight to integrate two-dimensional (2D) artificial nanozymes-based π-π stacking-triggered blocking effect with smartphone-assisted detection for developing efficient and low-cost colorimetric point-of-care testing of the risk factors in food and agriculture-related matrixes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y, Du X, Deng S, Li C, He Q, He G, Zhou M, Wang H, Deng R (2020) Dual triple helix-aptamer probes for mix-and-read detecting antibiotics in fish and milk. J Agric Food Chem 68:9524–9529. https://doi.org/10.1021/acs.jafc.0c03801

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, Sun R, Pan C, Sun Y, Mai B, Li QX (2020) Antibiotics and food safety in aquaculture. J Agric Food Chem 68:11908–11919. https://doi.org/10.1021/acs.jafc.0c03996

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Huang D, Lai C, Zeng G, Qin L, Zhang C, Yi H, Li B, Deng R, Liu S, Zhang Y (2018) Recent advances in sensors for tetracycline antibiotics and their applications. Trends Anal Chem 109:260–274. https://doi.org/10.1016/j.trac.2018.10.011

    Article  CAS  Google Scholar 

  4. Jalalian SH, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM (2018) Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Technol 73:45–57. https://doi.org/10.1016/j.tifs.2018.01.009

    Article  CAS  Google Scholar 

  5. Neven L, Shanmugam ST, Rahemi V, Trashin S, Sleegers N, Carrion EN, Gorun SM, De Wael K (2019) Optimized photoelectrochemical detection of essential drugs bearing phenolic groups. Anal Chem 91:9962–9969. https://doi.org/10.1021/acs.analchem.9b01706

    Article  CAS  PubMed  Google Scholar 

  6. Shen Y, Wei Y, Chen H, Wu Z, Ye Y, Han D-M (2022) Liposome-encapsulated aggregation-induced emission fluorogen assisted with portable smartphone for dynamically on-site imaging of residual tetracycline. Sens Actuators B Chem 350:130871. https://doi.org/10.1016/j.snb.2021.130871

    Article  CAS  Google Scholar 

  7. Wu XJ, Wang GN, Yang K, Liu HZ, Wang JP (2017) Determination of tetracyclines in milk by graphene-based solid-phase extraction and high-performance liquid chromatography. Anal Lett 50:641–650. https://doi.org/10.1080/00032719.2016.1194853

    Article  CAS  Google Scholar 

  8. Moreno-González D, García-Campaña AM (2017) Salting-out assisted liquid-liquid extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of tetracycline residues in infant foods. Food Chem 221:1763–1769. https://doi.org/10.1016/j.foodchem.2016.10.107

    Article  CAS  PubMed  Google Scholar 

  9. Kitazono Y, Ihara I, Yoshida G, Toyoda K, Umetsu K (2012) Selective degradation of tetracycline antibiotics present in raw milk by electrochemical method. J Hazard Mater 243:112–116. https://doi.org/10.1016/j.jhazmat.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Zheng S, Hu Y, Li Z, Luo F, He Z (2016) Electrochemical immunosensor based on the chitosan-magnetic nanoparticles for detection of tetracycline. Food Anal Methods 9:2972–2978. https://doi.org/10.1007/s12161-016-0480-z

    Article  Google Scholar 

  11. Yang Z, Ma C, Gu J, Wu Y, Zhu C, Li L, Gao H, Zhang Y, Shang Y, Wang C, Chen G (2021) A sensitive surface-enhanced raman spectroscopy method for detecting tetracycline in milk. Appl Spectrosc 75:589–595. https://doi.org/10.1177/0003702820978233

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Chen Q, Hassan MM, Chen X, Ouyang Q, Guo Z, Zhao J (2017) A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification. Biosens Bioelectron 92:192–199. https://doi.org/10.1016/j.bios.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  13. Shrivastava S, Trung TQ, Lee N-E (2020) Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 49:1812–1866. https://doi.org/10.1039/C9CS00319C

    Article  CAS  PubMed  Google Scholar 

  14. Quesada-González D, Merkoçi A (2018) Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 47:4697–4709. https://doi.org/10.1039/C7CS00837F

    Article  PubMed  Google Scholar 

  15. Lu H, Li M, Nilghaz A, Li L, Chen G, Jiang Y, Tian J (2021) Paper-based analytical device for high-throughput monitoring tetracycline residue in milk. Food Chem 354:129548. https://doi.org/10.1016/j.foodchem.2021.129548

    Article  CAS  PubMed  Google Scholar 

  16. Jia L, Chen X, Xu J, Zhang L, Dong X, Zhao D, Bi N, Zhu T, Zhao T (2022) Europium-based aminoclay containing carbon dots: a new visual fluorescence platform for visual point-of-care testing of tetracycline in various real samples. J Lumin 241:118497. https://doi.org/10.1016/j.jlumin.2021.118497

    Article  CAS  Google Scholar 

  17. Wang T, Mei Q, Tao Z, Wu H, Zhao M, Wang S, Liu Y (2020) A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens Bioelectron 148:111791. https://doi.org/10.1016/j.bios.2019.111791

    Article  CAS  PubMed  Google Scholar 

  18. Han L, Fan YZ, Qing M, Liu SG, Yang YZ, Li NB, Luo HQ (2020) Smartphones and test paper-assisted ratiometric fluorescent sensors for semi-quantitative and visual assay of tetracycline based on the target-induced synergistic effect of antenna effect and inner filter effect. ACS Appl Mater Interfaces 12:47099–47107. https://doi.org/10.1021/acsami.0c15482

    Article  CAS  PubMed  Google Scholar 

  19. Ye Y, Wu T, Jiang X, Cao J, Ling X, Mei Q, Chen H, Han D, Xu J-J, Shen Y (2020) Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Appl Mater Interfaces 12:14552–14562. https://doi.org/10.1021/acsami.9b23167

    Article  CAS  PubMed  Google Scholar 

  20. Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK (2021) Application of smartphone-based spectroscopy to biosample analysis: a review. Biosens Bioelectron 172:112788. https://doi.org/10.1016/j.bios.2020.112788

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Huang L, Wang Y, Sun J, Yue T, Zhang W, Wang J (2020) One-pot bottom-up fabrication of a 2D/2D heterojuncted nanozyme towards optimized peroxidase-like activity for sulfide ions sensing. Sens Actuators B Chem 306:127565. https://doi.org/10.1016/j.snb.2019.127565

    Article  CAS  Google Scholar 

  22. Zhao X, Li S, Yu X, Gang R, Wang H (2020) In situ growth of CeO2 on g-C3N4 nanosheets toward a spherical g-C3N4/CeO2 nanozyme with enhanced peroxidase-like catalysis: a selective colorimetric analysis strategy for mercury(II). Nanoscale 12:21440–21446. https://doi.org/10.1039/D0NR05315E

    Article  CAS  PubMed  Google Scholar 

  23. Tang Y, Huang X, Wang X, Wang C, Tao H, Wu Y (2022) G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem 366:130560. https://doi.org/10.1016/j.foodchem.2021.130560

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21. https://doi.org/10.1021/ja308249k

    Article  CAS  PubMed  Google Scholar 

  25. Feng Q-M, Shen Y-Z, Li M-X, Zhang Z-L, Zhao W, Xu J-J, Chen H-Y (2016) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+ for microRNA detection. Anal Chem 88:937–944. https://doi.org/10.1021/acs.analchem.5b03670

    Article  CAS  PubMed  Google Scholar 

  26. Borthakur P, Boruah PK, Das MR (2021) Facile synthesis of CuS nanoparticles on two-dimensional nanosheets as efficient artificial nanozyme for detection of Ibuprofen in water. J Environ Chem Eng 9:104635. https://doi.org/10.1016/j.jece.2020.104635

    Article  CAS  Google Scholar 

  27. Shahzeydi A, Ghiaci M, Farrokhpour H, Shahvar A, Sun M, Saraji M (2019) Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane. Chem Eng J 370:1310–1321. https://doi.org/10.1016/j.cej.2019.03.227

    Article  CAS  Google Scholar 

  28. Shen Y, Wu T, Zhang Y, Ling N, Zheng L, Zhang S-L, Sun Y, Wang X, Ye Y (2020) Engineering of a dual-recognition ratiometric fluorescent nanosensor with a remarkably large stokes shift for accurate tracking of pathogenic bacteria at the single-cell level. Anal Chem 92:13396–13404. https://doi.org/10.1021/acs.analchem.0c02762

    Article  CAS  PubMed  Google Scholar 

  29. Ju E, Dong K, Chen Z, Liu Z, Liu C, Huang Y, Wang Z, Pu F, Ren J, Qu X. Copper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem Int Ed 55:11467−11471. https://doi.org/10.1002/anie.201605509

  30. Yin Y, Liu M, Shi L, Zhang S, Hirani R A K, Zhu C, Chen C, Yuan A, Duan X, Wang S, Sun H (2022) Highly dispersive Ru confined in porous ultrathin g-C3N4 nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants. J Hazard Mater 128939. https://doi.org/10.1016/j.jhazmat.2022.128939

  31. Zhang J, Qian J, Mei Q, Yang L, He L, Liu S, Zhang C, Zhang K (2019) Imaging-based fluorescent sensing platform for quantitative monitoring and visualizing of fluoride ions with dual-emission quantum dots hybrid. Biosens Bioelectron 128:61–67. https://doi.org/10.1016/j.bios.2018.12.044

    Article  CAS  PubMed  Google Scholar 

  32. Li C, Zhu L, Yang W, He X, Zhao S, Zhang X, Tang W, Wang J, Yue T, Li Z (2019) Amino-functionalized Al-MOF for fluorescent detection of tetracyclines in milk. J Agric Food Chem 67:1277–1283. https://doi.org/10.1021/acs.jafc.8b06253

    Article  CAS  PubMed  Google Scholar 

  33. Xu J, Shen X, Jia L, Zhou T, Ma T, Xu Z, Cao J, Ge Z, Bi N, Zhu T, Guo S, Li X (2018) A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide-functionalized palygorskite nanomaterial. J Hazard Mater 342:158–165. https://doi.org/10.1016/j.jhazmat.2017.08.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22176047) and the Open Project Program of State Key Laboratory of Dairy Biotechnology (SKLDB2020-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhong Shen or Yingwang Ye.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wei, Y., Liu, Z. et al. Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk. Microchim Acta 189, 233 (2022). https://doi.org/10.1007/s00604-022-05329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05329-y

Keyword

Navigation