Skip to main content
Log in

Nitrogen and sulfur co-doped carbon dot-based ratiometric fluorescent probe for Zn2+ sensing and imaging in living cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A near-infrared nitrogen and sulfur co-doped carbon dot (N,S-CD)-based ratiometric fluorescent probe is proposed that is synthesized via hydrothermal approach using glutathione and formamide as precursor for sensing and imaging of Zn2+. The prepared N,S-CDs facilitate binding with Zn2+ owing to N and S atom doping. The ratio (I650/I680) of fluorescence intensity at 650 nm and 680 nm increased with the concentrations of Zn2+ when the excitation wavelength was 415 nm. The linearity range was 0.01 to 1.0 μM Zn2+with a detection limit of 5.0 nM Zn2+. The proposed probe was applied to label-free monitoring of Zn2+ in real samples and fluorescent imaging of Zn2+ in living cells, which confirmed its promising applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu L, Guo Q, Liu Y, Sun Q (2015) FRET-based ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem 87:5318–5323

    Article  CAS  Google Scholar 

  2. Li Y, Shi J, Wu X, Luo Z, Wang F, Guo Q (2009) Tracing of intracellular zinc(II) fluorescence flux to monitor cell apoptosis by using fluozin-3AM. Cell Biochem Funct 27:417–423

    Article  Google Scholar 

  3. Cuajungco M, Lees G (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  CAS  Google Scholar 

  4. Chausmer A (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    Article  CAS  Google Scholar 

  5. Vasto S, Candore G, Listi F, Balistreri C, Colonna-Romano G, Malavolta M, Lio D, Nuzzo D, Mocchegiani E, Di Bona D, Caruso C (2008) Inflammation, genes and zinc in Alzheimer’s disease. Brain Res Rev 58:96–105

    Article  CAS  Google Scholar 

  6. Rai A, Kumari N, Nair R, Singh K, Mishra L (2015) A new rhodamine derivative as a single optical probe for the recognition of Cu2+ and Zn2+ ions. RSC Adv 5:14382–14388

    Article  CAS  Google Scholar 

  7. Nolan E, Lippard S (2009) Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. J Acc Chem Res 42:193–203

    Article  CAS  Google Scholar 

  8. Ren H, Wu B, Jia-Tong Chen J, Yan X (2011) Silica-coated S2–enriched manganese-doped ZnS quantum dots as a photoluminescence probe for imaging intracellular Zn2+ ions. Anal Chem 83:8239–8244

    Article  CAS  Google Scholar 

  9. Tomat E, Nolan E, Jaworski J, Lippard S (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130:15776–15777

    Article  CAS  Google Scholar 

  10. Xu Z, Yoon J, Spring D (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  CAS  Google Scholar 

  11. Wang B, Liang Z, Tan H, Duan W, Luo M (2020) Red-emission carbon dots-quercetin systems as ratiometric fluorescent nanoprobes towards Zn2+ and adenosine triphosphate. Microchim Acta 187:345–354

    Article  CAS  Google Scholar 

  12. Ning P, Jiang J, Li L, Wang S, Yu H, Feng Y, Zhu M, Zhang B, Yin H, Guo Q, Meng X (2016) A mitochondria-targeted ratiometric two-photon fluorescent probe for biological zinc ions detection. Biosens Bioelectron 77:921–927

    Article  CAS  Google Scholar 

  13. Han B, Peng T, Yu M, Chi C, Li Y, Hu X, He G (2018) One-pot synthesis of highly fluorescent Fe2+-doped carbon dots for a dual-emissive nanohybrid for the detection of zinc ions and histidine. New J Chem 42:13651–13659

    Article  CAS  Google Scholar 

  14. Li W, Liu Z, Fang B, Jin M, Tian Y (2020) Two-photon fluorescent Zn2+ probe for ratiometric imaging and biosensing of Zn2+ in living cells and larval zebrafish. Biosens Bioelectron 148:111666

    Article  CAS  Google Scholar 

  15. Yoon S, Lee J, Lee M (2018) A ratiometric fluorescent probe for Zn2+ based on pyrene-appended naphthalimide-dipicolylamine. Sensors Actuators B Chem 258:50–55

    Article  CAS  Google Scholar 

  16. Song Q, Ma Y, Wang X, Tang T, Song Y, Ma Y, Xu G, Wei F, Cen Y, Hu Q (2018) “On-off-on” fluorescent system for detection of Zn2+ in biological samples using quantum dots-carbon dots ratiometric nanosensor. J Colloid Interface Sci 516:522–528

    Article  CAS  Google Scholar 

  17. Wang Y, Lao S, Ding W, Zhang Z, Liu S (2019) A novel ratiometric fluorescent probe for detection of iron ions and zinc ions based on dual-emission carbon dots. Sensors Actuators B Chem 284:186–192

    Article  CAS  Google Scholar 

  18. Waheed A, Abdel-Azeim S, Ullah N, Oladepo S (2020) Design and synthesis of two new terbium and europium complex-based luminescent probes for the selective detection of zinc ions. Luminescence 35:1238–1247

    Article  CAS  Google Scholar 

  19. Wu Z, Gao M, Wang T, Wan X, Zheng L, Huang C (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6:3868–3874

    Article  CAS  Google Scholar 

  20. Yu L, Ren G, Tang M, Zhu B, Chai F, Li G, Xu D (2018) Effective determination of Zn2+, Mn2+, and Cu2+ simultaneously by using dual-emissive carbon dots as colorimetric fluorescent probe. Eur J Inorg Chem 29:3418–3426

    Article  Google Scholar 

  21. Huang J, Zhong Z, Rong M, Zhou X, Chen X, Zhang M (2014) An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon 70:190–198

    Article  CAS  Google Scholar 

  22. Pan L, Sun S, Zhang L, Jiang K, Lin H (2016) Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 8:17350–17356

    Article  CAS  Google Scholar 

  23. Xu Q, Pu P, Zhao J, Dong C, Gao C, Chen Y, Chen J, Liu Y, Zhou H (2015) Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection. J Mater Chem A 3:542–546

    Article  CAS  Google Scholar 

  24. Sheng Z, Shao L, Chen J, Bao W, Wang F, Xia X (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  CAS  Google Scholar 

  25. Li Y, Wang J, Li X, Geng D, Banis M, Tang Y, Wang D, Li R, Sham T, Sun X (2012) Discharge product morphology and increased charge performance of lithium-oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. J Mater Chem 22:20170–20174

    Article  CAS  Google Scholar 

  26. Nie R, Wang J, Wang L, Qin Y, Chen P, Hou Z (2012) Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 50:586–596

    Article  CAS  Google Scholar 

  27. Yang S, Sun J, Li X, Zhou W, Wang Z, He P, Ding G, Xie X, Kang Z, Jiang M (2014) Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J Mater Chem A 2:8660–8667

    Article  CAS  Google Scholar 

  28. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalyst. Nanoscale 51:2272–12277

    Google Scholar 

  29. Liu H, Sun Y, Li Z, Yang J, Aryee A, Qu L, Du D, Lin Y (2019) Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale 11:8458–8463

    Article  CAS  Google Scholar 

  30. Xu Z, Baek K, Kim H, Cui J, Qian X, Spring D, Yoon S (2010) Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J Am Chem Soc 132:601–610

    Article  CAS  Google Scholar 

  31. Bharathi D, Krishna R, Siddlingeshwar B, Divakar D, Alkheraif A (2019) Understanding the interaction of carbon quantum dots with CuO and Cu2O by fluorescence quenching. J Hazard Mater 369:17–24

    Article  CAS  Google Scholar 

  32. Luo P, Sahu S, Yang S, Sonkar S, Wang J, Wang H, LeCroy G, Cao L, Sun Y (2013) Carbon quantum dots for optical bioimaging. J Mater Chem B 1:2116–2127

    Article  CAS  Google Scholar 

  33. Huang H, Cui Y, Liu M, Chen J, Wan Q, Wen Y, Deng F, Zhou N, Zhang X, Wei Y (2018) A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. J Colloid Interface Sci 532:767–773

    Article  CAS  Google Scholar 

  34. Zhao N, Wang Y, Hou S, Zhao L (2020) Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Microchim Acta 187:1–10

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No.21665001; 21874030), BAGUI Scholar Program and Natural Science Foundation of Guangxi Province (No.2021GXNSFAA220113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingfang Shi or Shulin Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, S., Liu, X. et al. Nitrogen and sulfur co-doped carbon dot-based ratiometric fluorescent probe for Zn2+ sensing and imaging in living cells. Microchim Acta 189, 107 (2022). https://doi.org/10.1007/s00604-022-05188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05188-7

Keywords

Navigation