Skip to main content
Log in

2,4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a carbon dot-based fluorescent probe for biothiols. Green emissive carbon dots (g-CDs; with λexem maxima of 407/505 nm) were synthesized by a one-step solvothermal method starting from 3-diethylaminophenol. They were then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride to afford 2,4-Dinitrobenzenesulfonate-functionalized CDs (g-CD-DNBS) as a nanoprobe for biothiols. The fluorescence of the g-CD-DNBS is quite weak. Upon addition of biothiols, the DNBS group of the probe is removed by thiol groups. This results in gradual restoration of the green fluorescence. The nanoprobe exhibits high selectivity for biothiols over other amino acids and biological molecules. The detection limits for cysteine, homocysteine and glutathione are 69, 74 and 69 nM (S/N = 3), respectively. The probe was applied to image biothiols in SMMC-7721 cells.

Schematic presentation of the mechanism of 2,4-dinitrobenzenesulfonate-functionalized carbon dots (g-CD-DNBS) for the detection of biothiols. g-CDs: green emissive carbon dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kooistra T, Millard PC, Lloyd J (1982) Role of thiols in degradation of proteins by cathepsins. Biochem J 204:471–477

    Article  CAS  Google Scholar 

  2. Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, Bankston LA (2002) Cysteine regulation of protein function–as exemplified by NMDA-receptor modulation. Trends Neurosci 25:474–480

    Article  CAS  Google Scholar 

  3. Christen WG, Ajani UA, Glynn RJ, Hennekens CH (2000) Blood levels of homocysteine and increased risks of cardiovascular disease: causal or casual. Arch Intern Med 160:422–432

    Article  CAS  Google Scholar 

  4. Njålsson R, Norgren S (2005) Physiological and pathological aspects of GSH metabolism. Acta Paediatr 94:132–137

    Article  Google Scholar 

  5. Jung HS, Chen X, Kim JS, Yoon J (2013) Recent progress in luminercent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031

    Article  CAS  Google Scholar 

  6. Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ (2015) Design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev 44:6143–6160

    Article  CAS  Google Scholar 

  7. Baker SN, Baker GA (2010) Luminescent carbon canodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  8. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  Google Scholar 

  9. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W (2015) Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale 7:1586–1595

    Article  CAS  Google Scholar 

  10. Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327

    Article  CAS  Google Scholar 

  11. Fong JF, Chin SF, Ng SM (2016) A unique “turn-on” fluorescence signaling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens Bioelectron 85:844–852

    Article  CAS  Google Scholar 

  12. Sun S, Jiang K, Qian S, Wang Y, Lin H (2017) Applying carbon dots-metal ions ensembles as a multichannel fluorescent sensor array: detection and discrimination of phosphate anions. Anal Chem 89:5542–5548

    Article  CAS  Google Scholar 

  13. Song ZL, Dai X, Li M, Teng H, Song Z, Xie D, Luo X (2018) Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Microchim Acta 185(10):485

    Article  Google Scholar 

  14. Wang Q, Pang H, Dong Y, Chi Y, Fu F (2018) Colorimetric determination of glutathione by using a nanohybrid composed of manganese dioxide and carbon dots. Microchim Acta 185:291

    Article  Google Scholar 

  15. Li L, Liu B, Chen Z (2019) Colorimetric and dark-field microscopic determination of cadmium (II) using unmodified gold nanoparticles and based on the formation of glutathione-cadmium (II) complexes. Microchim Acta 186:37

    Article  Google Scholar 

  16. Yan F, Bai Z, Zu F, Zhang Y, Sun X, Ma T, Chen L (2019) Yellow-emissive carbon dots with a large stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchim Acta 186:113

    Article  Google Scholar 

  17. Tang Y, Lee D, Wang J, Li G, Yu J, Lin W, Yoon J (2015) Development of fluorescent probes based on protection–deprotection of the key functional groups for biological imaging. Chem Soc Rev 44:5003–5015

    Article  CAS  Google Scholar 

  18. Bao L, Liu C, Zhang Z, Pang D (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27:1663–1667

    Article  CAS  Google Scholar 

  19. Pan L, Sun S, Zhang L, Jiang K, Lin H (2016) Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 8:17350–17356

    Article  CAS  Google Scholar 

  20. Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed 54:5360–5363

    Article  CAS  Google Scholar 

  21. Yuan F, Wang Z, Li X, Li Y, Tan Z, Fan L, Yang S (2017) Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater 29:1604436

    Article  Google Scholar 

  22. Ding H, Wei J, Zhang P, Zhou Z, Gao Q, Xiong H (2018) Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 14:1800612

    Article  Google Scholar 

  23. Wang Z, Yuan F, Li X, Li Y, Zhong H, Fan L, Yang S (2017) 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv Mater 29:1702910

    Article  Google Scholar 

  24. Yuan F, Yuan T, Sui L, Wang Z, Xi Z, Li Y, Li X, Fan L, Tan Z, Chen A, Jin M, Yang S (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat Commun 9:2249

    Article  Google Scholar 

  25. Wang Q, Zhang S, Zhong Y, Yang X, Li Z, Li H (2017) Preparation of yellow-green-emissive carbon dots and their application in constructing a fluorescent turn-on nanoprobe for imaging of selenol in living cells. Anal Chem 89:1734–1741

    Article  CAS  Google Scholar 

  26. Zheng X, Ananthanarayanan A, Luo K, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  Google Scholar 

  27. Dong Y, Pang H, Yang H, Guo C, Shao J, Chi Y, Li C, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800–7804

    Article  CAS  Google Scholar 

  28. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177

    Article  CAS  Google Scholar 

  29. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Article  CAS  Google Scholar 

  30. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley, New York, pp 276–278

    Book  Google Scholar 

  31. Ji S, Yang J, Yang Q, Liu S, Chen M, Zhao J (2009) Tuning the intramolecular charge transfer of alkynylpyrenes: effect on photophysical properties and its application in design of OFF-ON fluorescent thiol probes. J Org Chem 74:4855–4865

    Article  CAS  Google Scholar 

  32. Jiang W, Fu Q, Fan H, Ho J, Wang W (2007) A highly selective fluorescent probe for thiophenols. Angew Chem Int Ed 46:8445–8448

    Article  CAS  Google Scholar 

  33. Ivanov AR, Nazimov IV, Baratova L (2000) Determination of biologically active low-molecular-mass thiols in human blood: I. fast qualitative and quantitative, gradient and isocratic reversed-phase high-performance liquid chromatography with photometric and fluorescence detection. J Chromatogr A 895:157–166

    Article  CAS  Google Scholar 

  34. Harris DC (2003) Quantitative chemical analysis, 6th edn. W.H. Freeman, New York

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Nos. 21475105, 21675123) and the Science & Technology Department (No. 2018JM2001) of Shaanxi Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, Q., Yang, J. et al. 2,4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells. Microchim Acta 186, 402 (2019). https://doi.org/10.1007/s00604-019-3503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3503-9

Keywords

Navigation