Skip to main content

Advertisement

Log in

Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Various fluctuations of intracellular ions, biomolecules, and other conditions in the physiological environment play crucial roles in fundamental biological processes. These factors are of great importance for analysis in biomedical detection. Nevertheless, developments of the simple, rapid, and accurate proof for specific detection still encounter major challenges. Upconversion nanoparticles (UCNPs), which could absorb multiple low-energy near-infrared light (NIR) photon excitation and emits high-energy photons caused by anti-Stokes shift, show unique upconversion luminescence (UCL) properties, for example, sharp emission band, high physicochemical stability like near-zero photobleaching, photo blinking in biological tissues, and long luminescence lifetime. Furthermore, the NIR used for the light source to excite UCNPs enable lower photo-damage effect and deeper penetration of tissue, and in the meantime, it can avoid the auto-fluorescence and light scattering from biological tissue interference. Thus, the lanthanide-doped UCNP-based functional platform with controlled structure, crystalline phase, size, and multicolor emission has become an appropriate nanomaterial for bioapplications such as biosensing, bioimaging, drug release, and therapies. In this review, the recent progress about synthesis and biomedical applications of UCNPs related to sensing and bioimaging is summarized. Firstly, the different luminescence mechanisms of the upconversion process are presented. Secondly, four of the most common methods for synthesizing UCNPs are compared as well as the advantages and disadvantages of these synthetic routes. Meanwhile, the surface modification of lanthanide-doped UCNPs was introduced to pave the way for their biochemistry applications. Next, this review detailed the biological applications of lanthanide-doped UCNPs, particularly in bioimaging, including UCL and multi-modal imaging and biosensing (monitoring intracellular ions and biomolecules). Finally, the challenges and future perspectives in materials science and biomedical fields of UCNPs are concluded: the low quantum yield of the upconversion process should be considered when they are executed as imaging contrast agents. And the biosafety of lanthanide-doped UCNPs needs to be evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Li et al. (2020) with permission from John Wiley & Sons, Inc [37]

Fig. 2

Reproduced from Xu et al. (2018) with permission from the Royal Society of Chemistry [4]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Reproduced from Chang et al. (2016) with permission from John Wiley & Sons, Inc. [186]

Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Gu B, Zhang Q (2018) Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv Sci 5(3):1700609

    Article  Google Scholar 

  2. Aydin EB, Aydin M, Sezginturk MK (2019) Biosensors and the evaluation of food contaminant biosensors in terms of their performance criteria. Int J Environ Anal Chem 100(5):602–622

    Article  Google Scholar 

  3. Shen Y, Zhang Y, Gao ZF, Ye Y, Wu Q, Chen HY, Xu JJ (2021) Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today 38,

  4. Duan C, Liang L, Li L, Zhang R, Xu ZP (2018) Recent progress in upconversion luminescence nanomaterials for biomedical applications. J Mater Chem B 6(2):192–209

    Article  CAS  PubMed  Google Scholar 

  5. Chien YH, Chan KK, Anderson T, Kong KV, Ng BK, Yong KT (2019) Advanced near-infrared light-responsive nanomaterials as therapeutic platforms for cancer therapy. Adv Therap 2(3):49

    Article  Google Scholar 

  6. Zhou J, Zhou H, Tang JB, Deng SE, Yan F, Li WJ, Qu MH (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184(2):343–368

    Article  CAS  Google Scholar 

  7. Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13(8):639–650

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Zhang R, Guo Y, Zhang C, Zhao W, Xu ZP, Whittaker AK (2016) Functional magnetic porous silica for T-1-T-2 dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs. Nanotechnology 27(48):7

    Article  CAS  Google Scholar 

  9. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Guo YM, Xianyu YL, Chen WW, Zhao YY, Jiang XY (2013) Nanomaterials for ultrasensitive protein detection. Adv Mater 25(28):3802–3819

    Article  CAS  PubMed  Google Scholar 

  11. Tan HL, Liu BX, Chen Y (2012) Lanthanide coordination polymer nanoparticles for sensing of mercury(II) by photoinduced electron transfer. ACS Nano 6(12):10505–10511

    Article  CAS  PubMed  Google Scholar 

  12. Wen XM, Yu P, Toh YR, Ma XQ, Tang J (2014) On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem Commun 50(36):4703–4706

    Article  CAS  Google Scholar 

  13. Zhou J, Liu Q, Feng W, Sun Y, Li FY (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115(1):395–465

    Article  CAS  PubMed  Google Scholar 

  14. Reddy KL, Balaji R, Kumar A, Krishnan V (2018) Lanthanide doped near infrared active upconversion nanophosphors: fundamental concepts, synthesis strategies, and technological applications. Small 14(37):27

    Google Scholar 

  15. Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3(2):10

    Article  Google Scholar 

  16. Cheng L, Wang C, Feng LZ, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114(21):10869–10939

    Article  CAS  PubMed  Google Scholar 

  17. Bloembergen N (1959) Solid state infrared quantum counters. Phys Rev Lett 2(3):84–85

    Article  CAS  Google Scholar 

  18. Porter JF (1961) Fluorescence excitation by the absorption of two consecutive photons. Phys Rev Lett 7(11):414–415

    Article  CAS  Google Scholar 

  19. Efros AL, Nesbitt DJ (2016) Origin and control of blinking in quantum dots. Nat Nanotechnol 11(8):661–671

    Article  CAS  PubMed  Google Scholar 

  20. Hu J, Wang ZY, Li CC, Zhang CY (2017) Advances in single quantum dot-based nanosensors. Chem Commun 53(100):13284–13295

    Article  CAS  Google Scholar 

  21. Zhu X, Zhang J, Liu J, Zhang Y (2019) Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv Sci 6(22):1901358

    Article  CAS  Google Scholar 

  22. Zhang YH, Zhang LX, Deng R, Tian J, Zong Y, Jin DY, Liu XG (2014) Multicolor barcoding in a single upconversion crystal. J Am Chem Soc 136(13):4893–4896

    Article  CAS  PubMed  Google Scholar 

  23. Cheng LA, Yang K, Zhang SA, Shao MW, Lee ST, Liu ZA (2010) Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res 3(10):722–732

    Article  CAS  Google Scholar 

  24. Chen B, Wang F (2020) combating concentration quenching in upconversion nanoparticles. Accounts Chem Res 53(2):358–367

    Article  CAS  Google Scholar 

  25. Chen X, Jin LM, Kong W, Sun TY, Zhang WF, Liu XH, Fan J, Yu SF, Wang F (2016) Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat Commun 7:6

    Google Scholar 

  26. Lei Z, Ling X, Mei Q, Fu S, Zhang J, Zhang Y (2020) An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles. Adv Mater 32 (9), e1906225

  27. Mei Q, Bansal A, Jayakumar MKG, Zhang Z, Zhang J, Huang H, Yu D, Ramachandra CJA, Hausenloy DJ, Soong TW, Zhang Y (2019) Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nat Commun 10(1):4416

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bansal A, Liu HC, Jayakumar MKG, Andersson-Engels S, Zhang Y (2016) Quasi-continuous wave near-infrared excitation of upconversion nanoparticles for optogenetic manipulation of C-elegans. Small 12(13):1732–1743

    Article  CAS  PubMed  Google Scholar 

  29. Tang M, Zhu X, Zhang Y, Zhang Z, Zhang Z, Mei Q, Zhang J, Wu M, Liu J, Zhang Y (2019) Near-infrared excited orthogonal emissive upconversion nanoparticles for imaging-guided on-demand therapy. ACS Nano 13(9):10405–10418

    Article  CAS  PubMed  Google Scholar 

  30. Sun HJ, Mei QS, Shikha S, Liu JL, Zhang J, Zhang Y (2019) White-light emissive upconversion nanoparticles for visual and colorimetric determination of the pesticide thiram. Microchim Acta 186(2):9

    Article  Google Scholar 

  31. Teh D BL, Bansal A, Chai C, Toh TB, Tucker RAJ, Gammad GGL, Yeo Y, Lei Z, Zheng X, Yang F, Ho JS, Bolem N, Wu BC, Gnanasammandhan MK, Hooi L, Dawe GS, Libedinsky C, Ong WY, Halliwell B, Chow EK, Lim KL, Zhang Y, Kennedy BK (2020) A Flexi-PEGDA upconversion implant for wireless brain photodynamic therapy. Adv Mater 32 (29), e2001459

  32. Zhang Z, Jayakumar MKG, Zheng X, Shikha S, Zhang Y, Bansal A, Poon DJJ, Chu PL, Yeo ELL, Chua MLK, Chee SK, Zhang Y (2019) Upconversion superballs for programmable photoactivation of therapeutics. Nat Commun 10(1):4586

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng K, Loh KY, Wang Y, Chen Q, Fan J, Jung T, Nam SH, Suh YD, Liu X (2019) Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications. Nano Today 29,

  34. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong H, Sun LD, Yan CH (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44(6):1608–1634

    Article  CAS  PubMed  Google Scholar 

  36. Zheng X, Kankala RK, Liu CG, Wang SB, Chen AZ, Zhang Y (2021) Lanthanides-doped near-infrared active upconversion nanocrystals: upconversion mechanisms and synthesis. Coord Chem Rev 438, 213870

  37. Li Z, Liang T, Wang Q, Liu Z (2020) Strategies for constructing upconversion luminescence nanoprobes to improve signal contrast. Small 16 (1), e1905084

  38. Chivian JS, Case WE, Eden DD (1979) The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl Phys Lett 35(2):124–125

    Article  CAS  Google Scholar 

  39. Strek W, Deren P, Bednarkiewicz A (2000) Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions. J Lumin 87–89:999–1001

    Article  Google Scholar 

  40. Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10(11):924–936

    Article  CAS  PubMed  Google Scholar 

  41. Zhang YW, Sun X, Si R, You LP, Yan CH (2005) Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc 127(10):3260–3261

    Article  CAS  PubMed  Google Scholar 

  42. Lu S, Tu DT, Li XJ, Li RF, Chen XY (2016) A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res 9(1):187–197

    Article  CAS  Google Scholar 

  43. Zhou B, Xu B, He HM, Gu ZJ, Tang B, Ma Y, Zhai TY (2018) Enhanced green upconversion luminescence in tetrahedral LiYF4:Yb/Er nanoparticles by manganese(II)-doping: the key role of the host lattice. Nanoscale 10(6):2834–2840

    Article  CAS  PubMed  Google Scholar 

  44. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc 128(23):7444–7445

    Article  CAS  PubMed  Google Scholar 

  45. Li ZQ, Zhang Y (2008) An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4): Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19(34):5

    Article  Google Scholar 

  46. Chen CL, Li CG, Shi Z (2016) Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication. Adv Sci 3(10):26

    Article  Google Scholar 

  47. Na H, Woo K, Lim K, Jang HS (2013) Rational morphology control of beta-NaYF4:Yb, Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping. Nanoscale 5(10):4242–4251

    Article  CAS  PubMed  Google Scholar 

  48. Qiu HL, Chen GY, Sun L, Hao SW, Han G, Yang CH (2011) Ethylenediaminetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals. J Mater Chem 21(43):17202–17208

    Article  CAS  Google Scholar 

  49. Ding MY, Yin SL, Chen DQ, Zhong JS, Ni YR, Lu CH, Xu ZZ, Ji ZG (2015) Hexagonal NaYF4:Yb3+/Er3+ nano/micro-structures: controlled hydrothermal synthesis and morphology-dependent upconversion luminescence. Appl Surf Sci 333:23–33

    Article  CAS  Google Scholar 

  50. Qiu PY, Sun RJ, Gao G, Zhang CL, Chen B, Yan NS, Yin T, Liu YL, Zhang JJ, Yang Y, Cui DX (2015) An anion-induced hydrothermal oriented-explosive strategy for the synthesis of porous upconversion nanocrystals. Theranostics 5(5):456–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou RS, Li X (2016) Effect of EDTA on the formation and upconversion of NaYF4:Yb3+/Er3+. Opt Mater Express 6(4):1313–1320

    Article  CAS  Google Scholar 

  52. Wang X, Zhuang J, Peng Q, Li YD (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124

    Article  CAS  PubMed  Google Scholar 

  53. Cong T, Ding YD, Liu JP, Zhao HY, Hong X (2016) Synthesis and optical properties of Zn2+ doped NaYF4: Yb3+, Er3+ upconversion nanoparticles. Mater Lett 165:59–62

    Article  CAS  Google Scholar 

  54. Chen DQ, Huang P, Yu YL, Huang F, Yang AP, Wang YS (2011) Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem Commun 47(20):5801–5803

    Article  CAS  Google Scholar 

  55. Zhou J, Sun Y, Du XX, Xiong LQ, Hu H, Li FY (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295

    Article  CAS  PubMed  Google Scholar 

  56. Du P, Zhang P, Kang SH, Yu JS (2017) Hydrothermal synthesis and application of Ho3+-activated NaYbF4 bifunctional upconverting nanoparticles for in vitro cell imaging and latent fingerprint detection. Sens Actuator B-Chem 252:584–591

    Article  CAS  Google Scholar 

  57. Yang Y, Sun Y, Cao TY, Peng JJ, Liu Y, Wu YQ, Feng W, Zhang YJ, Li FY (2013) Hydrothermal synthesis of NaLuF4:153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34(3):774–783

    Article  CAS  PubMed  Google Scholar 

  58. Martin N, Boutinaud P, Mahiou R, Cousseins JC, Bouderbala M (1999) Preparation of fluorides at 80 degrees C in the NaF-(Y, Yb, Pr)F3 system. J Mater Chem 9(1):125–128

    Article  CAS  Google Scholar 

  59. Yi GS, Lu HC, Zhao SY, Yue G, Yang WJ, Chen DP, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4 Yb. Er infrared-to-visible up-conversion phosphors Nano Letters 4(11):2191–2196

    CAS  Google Scholar 

  60. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989

    Article  CAS  PubMed  Google Scholar 

  61. Xie MG, Chen, CL, Zeng G, Yu Y, Han Y, Shi Z, Feng SH (2021) Phase and morphology evolution of NaGdF4:Yb,Er nanocrystals with power density-dependent upconversion fluorescence via one-step microwave-assisted solvothermal method. J Lumin 239, 118283

  62. Huang H, Liang C, Sha HY, Yu Y, Lou Y, Chen CL, Li CG, Chen XB, Shi Z, Feng SH (2019) Microwave assisted hydrothermal way towards highly crystalized N-doped carbon quantum dots and their oxygen reduction performance. Chem Res Chin Univ 35(2):171–178

    Article  CAS  Google Scholar 

  63. Li MH, Wang J, Zheng YQ, Zheng ZJ, Li CX, Li ZQ (2017) Anchoring NaYF4: Yb, Tm upconversion nano-crystals on concave MIL-53(Fe) octahedra for NIR-light enhanced photocatalysis. Inorg Chem Front 4(10):1757–1764

    Article  CAS  Google Scholar 

  64. Chang HJ, Xie J, Zhao BZ, Liu BT, Xu SL, Ren N, Xie XJ, Huang L, Huang W (2015) Rare earth ion-doped upconversion nanocrystals: synthesis and surface modification. Nanomaterials 5(1):1–25

    Article  CAS  Google Scholar 

  65. Tong LL, Li XP, Zhang JS, Xu S, Sun JS, Cheng LH, Zheng H, Zhang YQ, Zhang XQ, Hua RN (2017) Microwave-assisted hydrothermal synthesis, temperature quenching and laser-induced heating effect of hexagonal microplate beta-NaYF4:Er3+/Yb3+ microcrystals under 1550 nm laser irradiation. Sens Actuators B Chem 246:175–180

    Article  CAS  Google Scholar 

  66. Chen Y, Yin Q, Ji XF, Zhang SJ, Chen HR, Zheng YY, Sun Y, Qu HY, Wang Z, Li YP (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33(29):7126–7137

    Article  CAS  PubMed  Google Scholar 

  67. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44(10):925–935

    Article  CAS  PubMed  Google Scholar 

  68. Xing HY, Bu WB, Zhang SJ, Zheng XP, Li M, Chen F, He QJ, Zhou LP, Peng WJ, Hua YQ (2012) Multifunctional nanoprobes for upconversion fluorescence. MR and CT trimodal imaging Biomaterials 33(4):1079–10892012

    CAS  PubMed  Google Scholar 

  69. Li ZQ, Zhang Y (2006) Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew Chem Int Ed 45(46):7732–7735

    Article  CAS  Google Scholar 

  70. Liu JN, Bu WB, Shi JL (2015) Silica coated upconversion nanoparticles: a versatile platform for the development of efficient theranostics. Acc Chem Res 48(7):1797–1805

    Article  CAS  PubMed  Google Scholar 

  71. Zhu XJ, Li JC, Qiu XC, Liu Y, Feng W, Li FY (2018) Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature Nat Commun 9:2176

    PubMed  Google Scholar 

  72. Qian HS, Guo HC, Ho PCL, Mahendran R (2009) Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285–2290

    Article  CAS  PubMed  Google Scholar 

  73. Li XM, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao DY (2014) Anisotropic growth-induced synthesis of dual-compartment janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc 136(42):15086–15092

    Article  CAS  PubMed  Google Scholar 

  74. Wang M, Mi CC, Zhang YX, Liu JL, Li F, Mao CB, Xu SK (2009) NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J Phys Chem C 113(44):19021–19027

    Article  CAS  Google Scholar 

  75. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580-U190

    Article  CAS  PubMed  Google Scholar 

  76. Sun LN, Wei RY, Feng J, Zhang HJ (2018) Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 364:10–32

    Article  CAS  Google Scholar 

  77. Chen ZG, Chen HL, Hu H, Yu MX, Li FY, Zhang Q, Zhou ZG, Yi T, Huang CH (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029

    Article  CAS  PubMed  Google Scholar 

  78. Dai YL, Yang DM, Ma PA, Kang XJ, Zhang X, Li CX, Hou ZY, Cheng ZY, Lin J (2012) Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials 33(33):8704–8713

    Article  CAS  PubMed  Google Scholar 

  79. Zhou HP, Xu CH, Sun W, Yan CH Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications (2009) Adv Funct Mater 19 (24), 3892–3900

  80. Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater 21(4):717–723

    Article  CAS  Google Scholar 

  81. Wang M, Liu JL, Zhang YX, Hou W, Wu XL, Xu SK (2009) Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals. Mater Lett 63(2):325–327

    Article  CAS  Google Scholar 

  82. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840

    Article  CAS  PubMed  Google Scholar 

  83. Lin M, Gao Y, Diefenbach SJK, Hornicek FJ, Park YI, Xu F, Lu TJ, Amiji M, Duan ZF (2017) Facial layer-by-layer engineering of upconversion nanoparticles for gene delivery: near-infrared-initiated fluorescence resonance energy transfer tracking and overcoming drug resistance in ovarian cancer. ACS Appl Mater Interfaces 9(9):7941–79492017

    Article  CAS  PubMed  Google Scholar 

  84. Boyer JC, Manseau MP, Murray JI, van Veggel FCJM (2010) Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26(2):1157–11642010

    Article  CAS  PubMed  Google Scholar 

  85. Duong HTT, Chen YH, Tawfik SA, Wen SH, Parviz M, Shimoni O, Jin DY (2018) Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv 8(9):4842–4849

    Article  CAS  Google Scholar 

  86. Liu C, Wang H, Li X, Chen D (2009) Monodisperse, size-tunable and highly efficient beta-NaYF4:Yb, Er (Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem 19(21):3546–3553

    Article  CAS  Google Scholar 

  87. Chen YH, Duong HTT, Wen SH, Mi C, Zhou YZ, Shimoni O, Valenzuela SM, Jin DY (2018) Exonuclease III-assisted upconversion resonance energy transfer in a wash-free suspension DNA assay. Anal Chem 90(1):663–668

    Article  CAS  PubMed  Google Scholar 

  88. Traina CA, Schwartz J (2007) Surface modification of Y2O3 nanoparticles. Langmuir 23(18):9158–9161

    Article  CAS  PubMed  Google Scholar 

  89. Li LL, Wu PW, Hwang K, Lu Y (2013) An exceptionally simple strategy for dna-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA Delivery, and Imaging. J Am Chem Soc 135(7):2411–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang GC, Pichaandi J, Johnson NJJ, Burke RD, van Veggel FCJM (2012) An effective polymer cross-linking strategy to obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications. Langmuir 28(6):3239–3247

    Article  CAS  PubMed  Google Scholar 

  91. Cheng L, Yang K, Shao MW, Lee ST, Liu Z (2011) Multicolor in vivo imaging of upconversion nanoparticles with emissions tuned by luminescence resonance energy transfer.J Phys Chem C 115 (6), 2686–2692

  92. Budijono SJ, Shan JN, Yao N, Miura Y, Hoye T, Austin RH, Ju YG, Prud’homme RK (2010) Synthesis of stable block-copolymer-protected NaYF4:Yb3+, Er3+ up-converting phosphor nanoparticles. Chem Mater 22(2):311–318

    Article  CAS  Google Scholar 

  93. Wu ZN, Guo CR, Liang S, Zhang H, Wang LP,Sun, HC, Yang B (2012) A pluronic F127 coating strategy to produce stable up-conversion NaYF4:Yb,Er (Tm) nanoparticles in culture media for bioimaging. J Mater Chem22 (35), 18596–18602

  94. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20:103–11

    Article  CAS  PubMed  Google Scholar 

  96. Maldonado CR, Salassa L, Gomez-Blanco N, Mareque-Rivas JC (2013) Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coord Chem Rev 257(19–20):2668–2688

    Article  CAS  Google Scholar 

  97. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li ZQ, Zhang Y, Jiang S (2008) multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv Mater 20 (24), 4765-+

  99. Jin JF, Gu YJ, Man CWY, Cheng JP, Xu ZH, Zhang Y, Wang HS, Lee VHY, Cheng SH, Wong WT (2011) Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(10):7838–7847

    Article  CAS  PubMed  Google Scholar 

  100. Wang C, Cheng L, Xu H, Liu Z (2012) Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33(19):4872–4881

    Article  CAS  PubMed  Google Scholar 

  101. Yang TS, Sun Y, Liu Q, Feng W, Yang PY, Li FY (2012) Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33(14):3733–3742

    Article  CAS  PubMed  Google Scholar 

  102. Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li ZP, Song J, Pandey RK, Agren H, Prasad PN, Han G (2012) (alpha-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6(9):8280–8287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xie J, Liu G, Eden HS, Chen XY (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390

    Article  CAS  PubMed  Google Scholar 

  105. Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41(12):1630–1640

    Article  CAS  PubMed  Google Scholar 

  106. Fang H, Li M, Liu Q, Gai Y, Yuan L, Wang S, Zhang X, Ye M, Zhang Y, Gao M, Hou Y, Lan X (2020) Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer. Nano-Micro Lett 12 (5),

  107. Cui ZW, Bu WB, Fan WP, Zhang JW, Ni DL, Liu YY, Wang J, Liu JN, Yao ZW, Shi JL (2016) Sensitive imaging and effective capture of Cu2+: towards highly efficient theranostics of Alzheimer’s disease. Biomaterials 104:158–167

    Article  CAS  PubMed  Google Scholar 

  108. Wu X, Zhang YW, Takle K, Bilsel O, Li ZJ, Lee H, Zhang ZJ, Li DS, Fan W, Duan CY, Chan EM, Lois C, Xiang Y, Han G (2016) Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10(1):1060–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu SY, Huang S, He Q, Wang LY (2015) Upconversion nanophosphores for bioimaging. Trends Analyt Chem 66:72–79

    Article  CAS  Google Scholar 

  110. Wright JS, Kaur T, Preshlock S, Tanzey SS, Winton WP, Sharninghausen LS, Wiesner N, Brooks AF, Sanford MS, Scott PJH (2020) Copper-mediated late-stage radiofluorination: five years of impact on preclinical and clinical PET imaging. Clin Transl Imaging 8(3):167–206

    Article  PubMed  PubMed Central  Google Scholar 

  111. Boss SD, Ametamey SM (2020) Development of folate receptor-targeted pet radiopharmaceuticals for tumor imaging-A bench-to-bedside journey. Cancers 12(6):21

    Article  Google Scholar 

  112. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29(3):365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986

    Article  CAS  PubMed  Google Scholar 

  114. Wahsner J, Gale EM, Rodriguez-Rodriguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119(2):957–1057

    Article  CAS  PubMed  Google Scholar 

  115. Zhang XH, Blasiak B, Marenco AJ, Trudel S, Tomanek B, van Veggel F (2016) Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging. Chem Mat 28(9):3060–3072

    Article  CAS  Google Scholar 

  116. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110(5):2858–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu J, Yin WY, Peng T, Chang YN, Zu Y, Li J, He X, Ma XY, Gu ZJ, Zhao YL (2017) Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYFW4: Yb, Er upconversion nanoparticles in mice via different administration routes. Nanoscale 9(13):4497–4507

    Article  CAS  PubMed  Google Scholar 

  118. Yang DM, Li CX, Lin J (2015) Multimodal cancer imaging using lanthanide-based upconversion nanoparticles. Nanomedicine 10(16):2573–2591

    Article  CAS  PubMed  Google Scholar 

  119. Yi Z, Lu W, Xu Y, Yang J, Deng L, Qian C, Zeng T, Wang H, Rao L, Liu H, Zeng S (2014) PEGylated NaLuF4: Yb/Er upconversion nanophosphors for in vivo synergistic fluorescence/X-ray bioimaging and long-lasting, real-time tracking. Biomaterials 35(36):9689–9697

    Article  CAS  PubMed  Google Scholar 

  120. Lei PP, Zhang P, Yao S, Song SY, Dong LL, Xu X, Liu XL, Du KM, Feng J, Zhang HJ (2016) Optimization of Bi3+ in upconversion nanoparticles induced simultaneous enhancement of near-infrared optical and X-ray computed tomography imaging capability. ACS Appl Mater Interfaces 8(41):27490–27497

    Article  CAS  PubMed  Google Scholar 

  121. Liu J, Zhang J, Huang F, Deng Y, Li B, Ouyang RZ, Miao YQ, Sun Y, Li YH (2020) X-ray and NIR light dual-triggered mesoporous upconversion nanophosphor/Bi heterojunction radiosensitizer for highly efficient tumor ablation. Acta Biomater 113:570–583

    Article  CAS  PubMed  Google Scholar 

  122. Liu Y, Kang N, Lv J, Zhou ZJ, Zhao QL, Ma LC, Chen Z, Ren L, Nie LM (2016) Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites. Adv Mater 28 (30), 6411-+

  123. Fang HY, Li MT, Liu QY, Gai YK, Yuan LJ, Wang S, Zhang X, Ye M, Zhang YX, Gao MY, Lan XL, Hou Y (2020) Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer. Nano-Micro Lett 12(1):62

    Article  CAS  Google Scholar 

  124. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7(7):591–607

    Article  CAS  PubMed  Google Scholar 

  125. Li XL, Yi ZG, Xue ZL, Zeng SJ, Liu HR (2017) Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging. Mater Sci Eng C-Mater Biol Appl 75:510–516

    Article  CAS  PubMed  Google Scholar 

  126. Zhang QC, Wang WT, Zhang M, Wu F, Zheng T, Sheng BL, Liu YH, Shen J, Zhou NL, Sun Y (2020) A theranostic nanocomposite with integrated black phosphorus nanosheet, Fe3O4@MnO2-doped upconversion nanoparticles and chlorin for simultaneous multimodal imaging, highly efficient photodynamic and photothermal therapy. Chem Eng J 391, 123525

  127. Sun Y, Feng W, Yang PY, Huang CH, Li FY (2015) The biosafety of lanthanide upconversion nanomaterials. Chem Soc Rev 44(6):1509–1525

    Article  CAS  PubMed  Google Scholar 

  128. Wang X, Yang J, Sun XJ, Yu HL, Yan F, Meguellati K, Cheng ZY, Zhang HY, Yang YW (2018) Facile surface functionalization of upconversion nanoparticles with phosphoryl pillar 5 arenes for controlled cargo release and cell imaging. Chem Commun 54(92):12990–12993

    Article  CAS  Google Scholar 

  129. Rao L, He ZB, Meng QF, Zhou ZY, Bu LL, Guo SS, Liu W, Zhao XZ (2017) Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J Biomed Mater Res Part A 105(2):521–530

    Article  CAS  Google Scholar 

  130. Qiu SS, Zeng JF, Hou Y, Chen L, Ge JX, Wen L, Liu CY, Zhang YJ, Zhu R, Gao MY (2018) Detection of lymph node metastasis with near-infrared upconversion luminescent nanoprobes. Nanoscale 10(46):21772–21781

    Article  CAS  PubMed  Google Scholar 

  131. Zou XM, Xu M, Yuan W, Wang QH, Shi YB, Feng W, Li FY (2016) A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging. Chem Commun 52(91):13389–13392

    Article  CAS  Google Scholar 

  132. Li YB, Zeng SJ, Hao JH (2019) Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm. ACS Nano 13(1):248–259

    Article  CAS  PubMed  Google Scholar 

  133. Deng HL, Huang S, Xu C (2018) Intensely red-emitting luminescent upconversion nanoparticles for deep-tissue multimodal bioimaging. Talanta 184:461–467

    Article  CAS  PubMed  Google Scholar 

  134. Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li ZP, Song J, Pandey RK, Agren H, Prasad PN, Han G (2012) (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6(9):8280–8287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu HL, Xu JH, Wang H, Liu YJ, Ruan QF, Wu YM, Liu XG, Yang JKW (2019) Tunable resonator-upconverted emission (TRUE) Color printing and applications in optical security. Adv Mater 31(15):9

    Google Scholar 

  136. Tan GR, Wang MH, Hsu CY, Chen NG, Zhang Y (2016) Small upconverting fluorescent nanoparticles for biosensing and bioimaging. Adv Opt Mater 4(7):984–997

    Article  CAS  Google Scholar 

  137. Pramanik SK, Sreedharan S, Singh H, Green NH, Smythe C, Thomas JA, Das A (2017) Imaging cellular trafficking processes in real time using lysosome targeted up-conversion nanoparticles. Chem Commun 53(94):12672–12675

    Article  CAS  Google Scholar 

  138. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57

    Article  CAS  PubMed  Google Scholar 

  139. Liu JN, Bu JW, Bu WB, Zhang SJ, Pan LM, Fan WP, Chen F, Zhou LP, Peng WJ, Zhao KL, Du J L, Shi JL (2014) Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew Chem.-Int Edit 53 (18), 4551–4555

  140. Zhang R, Li L, Sultanbawa Y, Xu ZP (2018) X-ray fluorescence imaging of metals and metalloids in biological systems. Am J Nucl Med Mol Imaging 8(3):169–188

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4(3):168–175

    Article  CAS  PubMed  Google Scholar 

  142. (2008) Metals in chemical biology. Nat Chem Biol 4 (3), 143–143

  143. Huang SC, Cao QQ, Cao YB Yang YR Xu TT, Yue K, Liu F, Tong ZX, Wang XB (2021) Morinda officinalis polysaccharides improve meat quality by reducing oxidative damage in chickens suffering from tibial dyschondroplasia. Food Chem 344,

  144. Santi CM, Santos T, Hernandez-Cruz A, Darszon A (1998) Properties of a novel pH-dependent Ca2+ permeation pathway present in male germ cells with possible roles in spermatogenesis and mature sperm function. J Gen Physiol 112(1):33–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Song XY, Yue ZH, Zhang JY, Jiang YXL, Wang ZH, Zhang SS (2018) Multicolor upconversion nanoprobes based on a dual luminescence resonance energy transfer assay for simultaneous detection and bioimaging of [Ca2+]i and pHi in living cells. Chem-Eur J 24(24):6458–6463

    Article  CAS  PubMed  Google Scholar 

  146. Wei RY, Wei ZW, Sun LN, Zhang JZ, Liu JL, Ge XQ, Shi LY (2016) Nile red derivative-modified nanostructure for upconversion luminescence sensing and intracellular detection of Fe3+ and MR imaging. ACS Appl Mater Interfaces 8(1):400–410

    Article  CAS  PubMed  Google Scholar 

  147. Yang ZL, Loh KY, Chu YT, Feng RP, Satyavolu NSR, Xiong MY, Huynh SMN, Hwang K, Li LL, Xing H, Zhang XB, Chelma YR, Gruebele M, Lu Y (2018) Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles. J Am Chem Soc 140(50):17656–17665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu S, Wang YM, Han J (2017) Fluorescent chemosensors for copper(II) ion: structure, mechanism and application. J Photochem Photobiol C-Photochem Rev 32:78–103

    Article  Google Scholar 

  149. Cotruvo JA Jr, Aron AT, Ramos-Torres KM, Chang CJ (2015) Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 44(13):4400–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284(2):717–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bertini I, Rosato A (2008) Menkes disease. Cell Mol Life Sci 65(1):89–91

    Article  CAS  PubMed  Google Scholar 

  152. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s diseases and amyotrophic lateral sclerosis) Chem Rev 106 (6), 1995–2044

  153. Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15(1):61–76

    Article  CAS  PubMed  Google Scholar 

  154. Xu YX, Li HF, Meng XF, Liu JL, Sun LN, Fan XL, Shi LY (2016) Rhodamine-modified upconversion nanoprobe for distinguishing Cu2+ from Hg2+ and live cell imaging. New J Chem 40(4):3543–3551

    Article  CAS  Google Scholar 

  155. Nolan EM, Lippard SJ (2008) Tools and eng X F, Liu J L, Sun L N, Fan X L, Shi L Y (2016) Rhodamine-modified upconversion nanoprobe for dtactics for the optical detection of mercuric ion. Chem Rev 108(9):3443–3480

    Article  CAS  PubMed  Google Scholar 

  156. Yang CC, Li YY, Wu N, Zhang YC, Feng W, Yu MM, Li ZX (2021) Ratiometric upconversion luminescence nanoprobes for quick sensing of Hg2+ and cells imaging. Sens Actuator B-Chem 326:8

    Article  Google Scholar 

  157. Gu B, Zhou Y, Zhang X, Liu XW, Zhang YH, Marks R, Zhang H, Liu XG, Zhang QC (2016) Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells. Nanoscale 8(1):276–282

    Article  CAS  PubMed  Google Scholar 

  158. Di XJ, Wang DJ, Zhou JJ, Zhang L, Stenzel MH, Su QP, Jin DY (2021) Quantitatively monitoring in situ mitochondrial thermal dynamics by upconversion nanoparticles. Nano Lett 21(4):1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhao J, Gao JH, Xue WT, Di ZH, Xing H, Lu Y, Li LL (2018) Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J Am Chem Soc 140(2):578–581

    Article  CAS  PubMed  Google Scholar 

  160. Ding QW, Zhan QQ, Zhou XM, Zhang T, Xing D (2016) Theranostic upconversion nanobeacons for tumor mRNA ratiometric fluorescence detection and imaging-monitored drug delivery. Small 12(43):5944–5953

    Article  CAS  PubMed  Google Scholar 

  161. Gao R, Hao CL, Xu LG, Xu CL, Kuang H (2018) Spiny nanorod and upconversion nanoparticle satellite assemblies for ultrasensitive detection of messenger RNA in living cells. Anal Chem 90(8):5414–5421

    Article  CAS  PubMed  Google Scholar 

  162. Zuo C, Guo YC, Li JJ, Peng ZP, Bai SL, Yang SS, Wang D, Chen H, Xie GM (2021) A nanoprobe for fluorescent monitoring of microRNA and targeted delivery of drugs. Rsc Adv 11(15):8871–8878

    Article  CAS  Google Scholar 

  163. Yang L, Zhang KY, Bi S, Zhu JJ (2019) Dual-acceptor-based upconversion luminescence nanosensor with enhanced quenching efficiency for in situ imaging and quantification of microRNA in living cells. ACS Appl Mater Interfaces 11(42):38459–38466

    Article  CAS  PubMed  Google Scholar 

  164. He XW, Zeng T, Li Z, Wang GL, Ma N (2016) Catalytic molecular imaging of microRNA in living cells by DNA-programmed nanoparticle disassembly. Angew Chem-Int Edit 55(9):3073–3076

    Article  CAS  Google Scholar 

  165. Zhang PH, He ZM, Wang C, Chen JN, Zhao JJ, Zhu XN, Li CZ, Min QH, Zhu JJ (2015) In Situ amplification of intracellular microRNA with MNAzyme nanodevices for multiplexed imaging, logic operation, and controlled drug release. ACS Nano 9(1):789–798

    Article  CAS  PubMed  Google Scholar 

  166. Degliangeli F, Kshirsagar P, Brunetti V, Pompa PP, Fiammengo R (2014) Absolute and direct microRNA quantification using DNA-gold nanoparticle probes. J Am Chem Soc 136(6):2264–2267

    Article  CAS  PubMed  Google Scholar 

  167. Zheng JD,3Wu YX, Xing D, 3Zhang T, (2019) Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res 12(4):931–938

    Article  CAS  Google Scholar 

  168. Liu J, Liu Y, Liu Q, Li C, Sun L, Li F (2011) Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J Am Chem Soc 133(39):15276–9

    Article  CAS  PubMed  Google Scholar 

  169. Wang P, Ahmadov TO, Lee C, Zhang P (2013) Ligase-assisted signal-amplifiable DNA detection using upconversion nanoparticles. RSC Adv 3(37):16326–16329

    Article  CAS  Google Scholar 

  170. Liang T, Li Z, Wang PP, Zhao FZ, Liu JZ, Liu ZH (2018) Breaking through the signal-to-background limit of upconversion nanoprobes using a target-modulated sensitizing switch. J Am Chem Soc 140(44):14696–14703

    Article  CAS  PubMed  Google Scholar 

  171. Zhou Y, Pei WB, Zhang X, Chen WQ, Wu JS, Yao C, Huang L, Zhang H, Huang W, Loo JSC, Zhang QC (2015) A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo. Biomaterials 54:34–43

    Article  CAS  PubMed  Google Scholar 

  172. Gao W, Li X, Liu ZH, Fu W, Sun YH, Cao WH, Tong LL, Tang B (2019) A Redox-responsive self-assembled nanoprobe for photoacoustic inflammation imaging to assess atherosclerotic plaque vulnerability. Anal Chem 91(1):1150–1156

    Article  CAS  PubMed  Google Scholar 

  173. Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP (2011) In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 14(6):819–829

    Article  CAS  PubMed  Google Scholar 

  174. Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci U S A 95(17):9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang YM, Zhao Q, Feng W, Li FY (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113(1):192–270

    Article  CAS  PubMed  Google Scholar 

  176. Li Z, Liang T, Lv SW, Zhuang QG, Liu ZH (2015) A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J Am Chem Soc 137(34):11179–11185

    Article  CAS  PubMed  Google Scholar 

  177. Zhang R, Liang LE, Meng QT, Zhao JB, Ta HT, Li L, Zhang ZQ, Sultanbawa Y, Xu ZP (2019) Responsive upconversion nanoprobe for background-free hypochlorous acid detection and bioimaging. Small 15(2):11

    Article  Google Scholar 

  178. Mei Q, Deng W, Yisibashaer W, Jing H, Du G, Wu M, Li BN, Zhang Y (2015) Zinc-dithizone complex engineered upconverting nanosensors for the detection of hypochlorite in living cells. Small 11(35):4568–4575

    Article  CAS  PubMed  Google Scholar 

  179. Qian Y, Karpus J, Kabil O, Zhang SY, Zhu HL, Banerjee R, Zhao J, He C (2011) Selective fluorescent probes for live-cell monitoring of sulphide. Nat Commun 2:495

    Article  PubMed  Google Scholar 

  180. Lefer DJ (2007) A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci USA America 104(46):17907–17908

    Article  CAS  Google Scholar 

  181. Papapetropoulos A, Pyriochou A, Altaany Z, Yang GD, Marazioti A, Zhou ZM, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesisBy Proc. Natl Acad Sci USA America 106(51):21972–21977

    Article  CAS  Google Scholar 

  182. Li L, Moore PK (2008) Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol Sci 29(2):84–90

    Article  PubMed  Google Scholar 

  183. Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B (2003) Endogenous hydrogen sulfide overproduction in Down syndrome. Am J Med Genet A 116A(3):310–311

    Article  PubMed  Google Scholar 

  184. Xuan AG, Long DH, Li JH, Ji WD, Zhang M, Hong LP, Liu JH (2012) Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer’s disease. J Neuroinflammation 9:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Distrutti E, Shah V, Morelli A (2005) The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42(3):539–548

    Article  CAS  PubMed  Google Scholar 

  186. Peng JJ, Teoh CL, Zeng X, Samanta A, Wang L, Xu W, Su DD, Yuan L, Liu XG, Chang YT (2016) Development of a highly selective, sensitive, and fast response upconversion luminescent platform for hydrogen sulfide detection. Adv Funct Mater 26(2):191–199

    Article  CAS  Google Scholar 

  187. Blaise GA, Gauvin D, Gangal M, Authier S (2005) Nitric oxide, cell signaling and cell death. Toxicology 208(2):177–192

    Article  CAS  PubMed  Google Scholar 

  188. Jin G, Gao Z, Liu Y, Zhao J, Ou H, Xu F, Ding D 2021 Polymeric nitric oxide delivery nanoplatforms for treating cancer, cardiovascular diseases, and infection. Adv Healthc Mater 10 3 e2001550

  189. Zhang L, Dai J, Zeng Z, Jia Y (2020) Nitric oxide induces HepG2 cell death via extracellular signal-regulated protein kinase activation by regulating acid sphingomyelinase. Mol Biol Rep 47(10):8353–8359

    Article  CAS  PubMed  Google Scholar 

  190. Forstermann U, Sessa W C 2012 Nitric oxide synthases: regulation and function. Eur Heart J 33 7 829–37, 837a-837d

  191. Yang L, Feura ES, Ahonen MJ R, Schoenfisch MH 2018 Nitric oxide-releasing macromolecular scaffolds for antibacterial applications. Adv Healthc Mater 7 13 e1800155

  192. Wang H, Liu Y, Wang ZH, Yang M, Gu YQ (2018) 808 nm-light-excited upconversion nanoprobe based on LRET for the ratiometric detection of nitric oxide in living cancer cells. Nanoscale 10(22):10641–10649

    Article  CAS  PubMed  Google Scholar 

  193. Wang NN, Yu XY, Zhang K, Mirkin CA, Li JS (2017) Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J Am Chem Soc 139(36):12354–12357

    Article  CAS  PubMed  Google Scholar 

  194. Nareoja T, Deguchi T, Christ S, Peltomaa R, Prabhakar N, Fazeli E, Perala N, Rosenholm JM, Arppe R, Soukka T, Schaferling M (2017) Ratiometric sensing and imaging of intracellular pH using polyethylenimine-coated photon upconversion nanoprobes. Anal Chem 89(3):1501–1508

    Article  CAS  PubMed  Google Scholar 

  195. Li HX, Dong H, Yu MM, Liu CX, Li ZX, Wei LH, Sun LD, Zhang HY (2017) NIR Ratiometric luminescence detection of pH fluctuation in living cells with hemicyanine derivative-assembled upconversion nanophosphors. Anal Chem 89(17):8863–8869

    Article  CAS  PubMed  Google Scholar 

  196. Lei PP, Liu XL, Dong LL, Wang Z, Song SY, Xu X, Su Y, Feng J, Zhang HJ (2016) Lanthanide doped Bi2O3 upconversion luminescence nanospheres for temperature sensing and optical imaging. Dalton Trans 45(6):2686–2693

    Article  CAS  PubMed  Google Scholar 

  197. Xu M, Zou XM, Su QQ, Yuan W, Cao C, Wang QH, Zhu XJ, Feng W, Li FY (2018) Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat Commun 9:7

    Google Scholar 

  198. Zhao MY, Wang R, Li BH, Fan Y, Wu YF, Zhu XY, Zhang F (2019) Precise In Vivo Inflammation imaging using insitu responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles. Angew Chem-Int Edit 58(7):2050–2054

    Article  CAS  Google Scholar 

  199. Li DF, He SQ, Wu YF, Liu JQ, Liu Q, Chang BS, Zhang Q, Xiang ZH, Yuan Y, Jian C, Yu AX, Cheng Z (2019) Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window. Adv Sci 6(23):1902042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support from Natural Science Foundation of Shanghai (No. 21ZR1423200), Weifang Science and Technology Development Plan Project (No. 2020GX060), Discipline Construction Project of Weifang University of Science and Technology (No. 2021XKJS32), and Innovative Research Team of High-Level Local Universities in Shanghai.

Funding

This study is financially supported by the Natural Science Foundation of Shanghai (No. 21ZR1423200), Weifang Science and Technology Development Plan Project (No. 2020GX060), Discipline Construction Project of Weifang University of Science and Technology (No. 2021XKJS32), and Innovative Research Team of High-Level Local Universities in Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangfang Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, C., Liu, F. et al. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Microchim Acta 189, 109 (2022). https://doi.org/10.1007/s00604-022-05180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05180-1

Keywords

Navigation