Skip to main content
Log in

Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS2 and AuNPs coupling with HRP enzyme signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich electrochemical biosensing strategy for ultrasensitive detection of miRNA-21 was developed by using graphene oxide incorporated 3D-flower-like MoS2 (3D MoS2-rGO) nanocomposites as the substrate and horseradish peroxidase (HRP)-functionalized DNA strand 1 (S1)-gold nanoparticles (S1-AuNPs-HRP) as signal amplification probes. Herein, 3D MoS2-rGO nanocomposites not only had a large specific surface area and excellent conductivity, but also provided more attachment sites for electrodepositing AuNPs. In the presence of target miRNA, a sandwich structure was formed, and the determination of the miRNA-21 was carried out by measuring the DPV response of H2O2 mediated by hydroquinone (HQ) at a potential of + 0.052 V (vs AgCl reference electrode). Under the optimal experimental conditions, the as-prepared biosensor enabled the ultrasensitive detection of miRNA-21 from 5 fM to 0.5 μM with the low detection limit of 0.54 fM (S/N = 3), comparable or lower than previous reported methods for miRNA-21 detection, which benefited from the synergistic amplification of 3D MoS2-rGO and AuNPs-HRP. The prepared biosensor showed satisfactory selectivity, reproducibility, and stability towards miRNA-21 detection. The biosensor was feasible for accurate and quantitative detection of miRNA-21 in normal human serum samples with RSD below 5.86%, which showed a great potential in clinical analysis and disease diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo W-J, Wu Z, Yang X-Y, Pang D-W, Zhang Z-L (2019) Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Biosens Bioelectron 131:267–273

    Article  CAS  Google Scholar 

  2. Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Vilaivan T, Thavarungkul P (2018) Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor. Biosens Bioelectron 102:217–225

    Article  CAS  Google Scholar 

  3. Bao J, Hou C, Zhao Y, Geng X, Samalo M, Yang H, Bian M, Huo D (2019) An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy–rGO nanocomposite as a substrate. Talanta 196:329–336

    Article  CAS  Google Scholar 

  4. D.D. Cao, L. Li, W.Y. Chan (2016) MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Intern J Mol Sci 17(6)

  5. Asif M, Aziz A, Ashraf G, Wang Z, Wang J, Azeem M, Chen X, Xiao F, Liu H (2018) Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl Mater Interfaces 10(43):36675–36685

    Article  CAS  Google Scholar 

  6. C. Zhou, K. Cui, Y. Liu, L. Li, L. Zhang, M. Xu, S. Ge, Y. Wang, J. Yu (2020) Ultrasensitive lab-on-paper device via Cu/Co double-doped CeO2 nanospheres as signal amplifiers for electrochemical/visual sensing of miRNA-155. Sens Act B: Chem 321 128499

  7. Cai W, Xie S, Tang Y, Chai Y, Yuan R, Zhang J (2017) A label-free electrochemical biosensor for microRNA detection based on catalytic hairpin assembly and in situ formation of molybdophosphate. Talanta 163:65–71

    Article  CAS  Google Scholar 

  8. G.S. Pall, C. Codony-Servat, J. Byrne, L. Ritchie, A. Hamilton (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nuc Acids Res 35(8)

  9. Asif M, Aziz A, Wang Z, Ashraf G, Wang J, Luo H, Chen X, Xiao F, Liu H (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91(6):3912–3920

    Article  CAS  Google Scholar 

  10. Asif M, Haitao W, Shuang D, Aziz A, Zhang G, Xiao F, Liu H (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. Sens Actuators, B Chem 239:243–252

    Article  CAS  Google Scholar 

  11. Miao P, Zhang T, Xu J, Tang Y (2018) Electrochemical detection of miRNA combining T7 exonuclease-assisted cascade signal amplification and DNA-templated copper nanoparticles. Anal Chem 90(18):11154–11160

    Article  CAS  Google Scholar 

  12. Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA (2020) Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. Lab Chip 20(3):548–557

    Article  CAS  Google Scholar 

  13. Aziz A, Asif M, Azeem M, Ashraf G, Wang Z, Xiao F, Liu H (2019) Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 1047:197–207

    Article  CAS  Google Scholar 

  14. Asif M, Liu H, Aziz A, Wang H, Wang Z, Ajmal M, Xiao F, Liu H (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359

    Article  CAS  Google Scholar 

  15. M. Asif, A. Aziz, G. Ashraf, T. Iftikhar, Y. Sun, F. Xiao, H. Liu (2022) Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues. Chem Engin J 427 131398

  16. A. Aziz, M. Asif, G. Ashraf, T. Iftikhar, J. Hu, F. Xiao, S. Wang (2022) Boosting electrocatalytic activity of carbon fiber@fusiform-like copper-nickel LDHs: sensing of nitrate as biomarker for NOB detection. J Hazard Mat 422 126907

  17. Huang KJ, Shuai HL, Zhang JZ (2016) Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and exonuclease III assisted signal amplification. Biosens Bioelectron 77:69–75

    Article  CAS  Google Scholar 

  18. K.R. Reddy, B. Hemavathi, G.R. Balakrishna, A.V. Raghu, S. Naveen, M.V. Shankar, 11 - Organic conjugated polymer-based functional nanohybrids: synthesis methods, mechanisms and its applications in electrochemical energy storage supercapacitors and solar cells, in: K. Pielichowski, T.M. Majka (Eds.), Polymer composites with functionalized nanoparticles, Elsevier2019, pp. 357–379

  19. Asif M, Aziz A, Wang H, Wang Z, Wang W, Ajmal M, Xiao F, Chen X, Liu H (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim Acta 186(2):61

    Article  Google Scholar 

  20. Kumar S, Reddy KR, Reddy CV, Shetti NP, Sadhu V, Shankar MV, Reddy VG, Raghu AV, Aminabhavi TM (2021) Metal nitrides and graphitic carbon nitrides as novel photocatalysts for hydrogen production and environmental remediation. In: Balakumar S, Keller V, Shankar MV (eds) Nanostructured materials for environmental applications. Springer International Publishing, Cham, pp 485–519

    Chapter  Google Scholar 

  21. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277

    Article  CAS  Google Scholar 

  22. Wang Y, Wang Y, Wu D, Ma H, Zhang Y, Fan D, Pang X, Du B, Wei Q (2018) Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens Actuators, B Chem 255:125–132

    Article  CAS  Google Scholar 

  23. Zhou S, Gao J, Wang S, Fan H, Huang J, Liu Y (2020) Highly efficient removal of Cr(VI) from water based on graphene oxide incorporated flower-like MoS2 nanocomposite prepared in situ hydrothermal synthesis. Environ Sci Pollut Res 27(12):13882–13894

    Article  CAS  Google Scholar 

  24. T. Mathew, R.A. Sree, S. Aishwarya, K. Kounaina, A.G. Patil, P. Satapathy, S.P. Hudeda, S.S. More, K. Muthucheliyan, T.N. Kumar, A.V. Raghu, K.R. Reddy, F. Zameer (2020) Graphene-based functional nanomaterials for biomedical and bioanalysis applications. FlatChem 23 100184

  25. Hodala JL, Moon DJ, Reddy KR, Reddy CV, Kumar TN, Ahamed MI, Raghu AV (2021) Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis. Int J Hydrogen Energy 46(4):3289–3301

    Article  CAS  Google Scholar 

  26. K. Kannan, D. Radhika, A.S. Nesaraj, K. Kumar Sadasivuni, K.R. Reddy, D. Kasai, A.V. Raghu (2020) Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mat Sci Energy Technol 3 853–861

  27. Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39(11):4234–4243

    Article  CAS  Google Scholar 

  28. Chen Z, Lai G, Liu S, Yu A (2018) Ultrasensitive electrochemical aptasensing of kanamycin antibiotic by enzymatic signal amplification with a horseradish peroxidase-functionalized gold nanoprobe. Sens Actuators, B Chem 273:1762–1767

    Article  CAS  Google Scholar 

  29. Liu F, Xiang G, Jiang D, Zhang L, Chen X, Liu L, Luo F, Li Y, Liu C, Pu X (2015) Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron 74:214–221

    Article  CAS  Google Scholar 

  30. Zhu D, Liu W, Zhao D, Hao Q, Li J, Huang J, Shi J, Chao J, Su S, Wang L (2017) Label-free electrochemical sensing platform for MicroRNA-21 detection using thionine and gold nanoparticles co-functionalized MoS2 nanosheet. ACS Appl Mater Interfaces 9(41):35597–35603

    Article  CAS  Google Scholar 

  31. Cheng F-F, He T-T, Miao H-T, Shi J-J, Jiang L-P, Zhu J-J (2015) Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl Mater Interfaces 7(4):2979–2985

    Article  CAS  Google Scholar 

  32. Z. Liang, D. Ou, D. Sun, Y. Tong, H. Luo, Z. Chen (2019) Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Bios Bioel 146 111744

  33. Li F, Zhang L, Li J, Lin X, Li X, Fang Y, Huang J, Li W, Tian M, Jin J, Li R (2015) Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22

    Article  CAS  Google Scholar 

  34. Dai G, Li Z, Luo F, Ai S, Chen B, Wang Q (2019) Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchim Acta 186(9):620

    Article  Google Scholar 

  35. X. Hou, Z. Wang, G. Fan, H. Ji, S. Yi, T. Li, Y. Wang, Z. Zhang, L. Yuan, R. Zhang, J. Sun, D. Chen (2020) Hierarchical three-dimensional MoS2/GO hybrid nanostructures for triethylamine-sensing applications with high sensitivity and selectivity. Sensors and Actuators, B: Chemical 317

  36. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55(23):7102–7108

    Article  CAS  Google Scholar 

  37. Fang CS, Kim KS, Yu B, Jon S, Kim MS, Yang H (2017) Ultrasensitive electrochemical detection of miRNA-21 using a zinc finger protein specific to DNA-RNA hybrids. Anal Chem 89(3):2024–2031

    Article  CAS  Google Scholar 

  38. Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Naderi-Manesh H (2016) An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 77:99–106

    Article  CAS  Google Scholar 

  39. Y.X. Wen, M. Qing, S.L. Chen, H.Q. Luo, N.B. Li (2021) Y-type DNA structure stabilized p-type CuS quantum dots to quench photocurrent of ternary heterostructure for sensitive photoelectrochemical detection of miRNA. Sensors and Actuators, B: Chemical 329

  40. Y.T. Yaman, O.A. Vural, G. Bolat, S. Abaci (2020) One-pot synthesized gold nanoparticle-peptide nanotube modified disposable sensor for impedimetric recognition of miRNA 410. Sensors and Actuators, B: Chemical 320

  41. Zhang K, Dong H, Dai W, Meng X, Lu H, Wu T, Zhang X (2017) Fabricating Pt/Sn-In2O3 nanoflower with advanced oxygen reduction reaction performance for high-sensitivity microRNA electrochemical detection. Anal Chem 89(1):648–655

    Article  CAS  Google Scholar 

  42. Chen Z, Xie Y, Huang W, Qin C, Yu A, Lai G (2019) Exonuclease-assisted target recycling for ultrasensitive electrochemical detection of microRNA at vertically aligned carbon nanotubes. Nanoscale 11(23):11262–11269

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NO. 81772290), Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYS21069, 2020CDCGJ014), Fundamental Research Funds for the Central Universities (2021CDJYGRH006), National Facility for Translational Medicine (Shanghai) Open Research Fund (TMSK-2021–113), Science and Technology Research Program of Chongqing Education Commission of China (KJCXZD2020008), Chongqing Graduate Tutor Team Construction Project, Analytical and Testing Center of Chongqing University for (FE-SEM / XPS / XRD) and the sharing fund of Chongqing University’s large equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawei Li, Danqun Huo or Changjun Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2905 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Yang, H., Zhao, J. et al. Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS2 and AuNPs coupling with HRP enzyme signal amplification. Microchim Acta 189, 49 (2022). https://doi.org/10.1007/s00604-021-05141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05141-0

Keywords

Navigation